
DISCRETE MESH OPTIMIZATION ON SURFACE AND
VOLUME MESHES

Daniel Zint Roberto Grosso Florian Lunz

Chair of Computer Vision
Friedrich-Alexander-Universität, 91058 Erlangen, Germany

{daniel.zint, roberto.grosso, flo.lunz}@fau.de

ABSTRACT

State of the art algorithms in surface mesh smoothing rely on computing new vertex positions on approximated
shapes and re-projecting the results back onto the real surface or having no internal surface representation at all,
which leads inevitably to suboptimal results. Discrete Mesh Optimization (DMO) is a greedy approach to topology-
consistent mesh quality improvement, which was initially designed to smooth triangle and quadrilateral meshes in
two dimensions and tetrahedral meshes in three dimensions. We present a generalization of DMO which allows
optimization on discretized surfaces, or more general d-dimensional manifolds. As the method is not bound to
search directions, it is capable of finding the optimal vertex positions directly on a surface without any re-projection.
Therefore, the proposed technique preserves the underlying surface or volume. We present examples for surface and
volume meshes, showing the improvement-potential of considering boundary vertices in the smoothing process.

Keywords: mesh improvement, mesh smoothing, max-min optimization

1. INTRODUCTION

The discretization of some space Ω ⊂ Rd in form of a
mesh plays an important role in finite element based
simulations and in computer graphics. For both cases
a smooth mesh is preferred although the reasons may
be different. Also the definition of a smooth mesh
varies substantially depending on the field of applica-
tion. As a consequence of this diversity a vast range of
smoothing and optimization methods emerged within
the last decades [1, 2, 3]. These methods aim to
improve mesh quality by repositioning vertices while
keeping the topology unchanged. In current research
mesh smoothing is still a vividly discussed topic, es-
pecially for volume meshes [4, 5, 6, 7].

The method Discrete Mesh Optimization (DMO) [8]
improves mesh quality iteratively while finding the op-
timal position for each vertex relatively to its neigh-
borhood by evaluating a set of candidate positions.
DMO does not rely on derivatives which allows qual-
ity metrics to be non-smooth or even discontinuous.

This also means that DMO can optimize for any qual-
ity criterion, e.g. roundness, anisotropy, or rectangu-
larity. Furthermore, quality improvement is assured
within each iteration.

Being independent of derivatives and search directions
brings another advantage. The set of candidate posi-
tions can be mapped onto any parameterizable space.
Thus, optimization of manifold meshes can be done
precisely on the surface. Together with the assurance
of quality improvement follows that DMO will con-
verge to an optimal result. Many other methods tend
to deform a mesh to something spherical.

We present a generalization of DMO to extend the
area of application to meshes discretizing a domain
Ω ⊂ Rd−k with d = 2, 3 and k ≥ 0, i.e. volume and
surface meshes in 2- and 3-dimensional space. Further-
more, we introduce a smooth and vertex-interpolating
surface estimation method. This enables applying
DMO on surface meshes where the underlying shape is
unknown. An important field of application is tetrahe-

159

dral mesh improvement. Smoothing not just interior
but also boundary vertices affects mesh quality signif-
icantly.

In this paper, we restrict ourselves to simplicial
meshes. Just like DMO, this method can be easily
adapted for other mesh types. As long as a quality
metric for a mesh exists, the method can be applied.

In Section 1.1 we present the max-min problem (as
presented in [8]) which we consider as the core issue
of mesh smoothing. In Section 1.2 we display some
widely-used smoothing methods. Section 1.3 gives a
short introduction to DMO, according to [8]. It is
followed by Section 2 where we generalize DMO and
define the space of functions on which DMO is guaran-
teed to find the local optimum. Additionally, a surface
estimation method is presented, which can be used if
no surface description is available. In Section 3 we
compare our method to other smoothing approaches.
Conclusions are given in Section 4.

1.1 The max-min Problem of Element
Quality Improvement

Assume for each element ek of a mesh M in Rd an
element quality q

(e)
k is obtained by evaluating a quality

metric q(e)(ek). The quality q
(v)
i of a vertex vi that is

positioned at x is defined as the minimal quality of its
incident elements ek ∈ Ne(vi),

q
(v)
i (x) = min

ek∈Ne(vi)
q
(e)
k (x) . (1)

From Equation (1) follows the local optimization prob-

lem for finding the maximum quality q
(v)
i,max for a vertex

vi,

q
(v)
i,max = max

x
q
(v)
i (x) = max

x
min

ek∈Ne(vi)
q
(e)
k (x) . (2)

The optimal position x∗ for vi is given as

x∗ = arg max
x

q
(v)
i (x) = arg max

x
min

ek∈Ne(vi)
q
(e)
k (x) . (3)

An iterative method which is meant to improve ele-
ment quality should aim for finding x∗ which is non-
trivial as Equation (3) is only C0 continuous, e.g. Fig-
ure 1.

Note that DMO actually improves vertex quality q(v)

not element quality q(e). Using the definition in Equa-
tion (1) implies that by improving q(v) also the mini-
mal element quality increases. Depending on the opti-
mization goal, it might be reasonable to adjust Equa-
tion (1). This was done for example in [9] to adapt
element size.

1.2 Related Work

Smoothing methods can be divided into three main
groups, Laplacian-, physics-, and optimization-based.

0

0.1

0.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4

0.9

1

0.6

0.90.80.8 0.70.60.50.40.30.21 0.10

Figure 1: Vertex quality q(v) according to Equation (1)

with q(e) defined as the mean ratio metric.

The classical Laplace-smoothing [10], developed for
flat triangle meshes, is known to be fast but unstable
in case of concave domains. A wide range of meth-
ods were proposed that modify the classical Laplace
smoothing [11, 12, 13, 14, 15, 2, 3, 16, 17]. One
representative is the ”Smart” Laplacian Smoothing
of Freitag [14] which only performs smoothing when
mesh quality is increased. Using ”Smart” Laplacian
Smoothing without further processing steps does not
lead to satisfying results as it does not improve mesh
quality in concave regions. Freitag proposed to use
it in combination with an optimization-based method.
Laplacian-smoothers are fast but they also lead to sub-
optimal results. Many of these methods cannot guar-
antee that the quality will not decrease. Nevertheless,
they are still used frequently.

Also for surface meshes Laplacian-based smoothing
methods are standard. Here, they bring another dis-
advantage, namely they significantly change geome-
try when too many iterations are performed. Classi-
cal Laplace-smoothing drags the whole mesh towards
its center of gravity, Figure 2(b). Applying cotangent
weights makes the smoothing process unstable, Fig-
ure 2(c). A frequently used method is Taubin smooth-
ing [18]. If only a few iterations are performed, the
results look promising, as long as the parameters are
chosen correctly. Changing the parameters or increas-
ing the number of iterations also deforms the mesh,
Figure 2(d).

Physics-based methods consider the mesh as a phys-
ical model. Some examples are spring-mass systems
[19, 20], truss networks [21], or elasticity models
[22, 23, 24]. Just like Laplace-based methods they do
not provide any guarantee of mesh improvement.

Optimization-based methods are named after their ap-
proach of optimizing a quality metric. Some methods
try to overcome the problem of non-differentiability
by replacing Equation (2) with a smooth function

160

(a) Original (b) Laplace, 100 iterations (c) Laplace with cotangent
weights, 50 iterations

(d) Taubin, 500 iterations

Figure 2: Laplacian-based smoothing methods.

[25, 26, 27, 28, 29]. They run into the same prob-
lems as Laplacian-based methods when the domain is
too complex.

To the authors knowledge, the currently most common
smoothing algorithm is the method of Freitag. For ex-
ample, it is implemented in the tetrahedral mesh im-
provement program Stellar [30]. While in [1, 14] the
optimization is done with an analogue of the steepest
descent method for smooth functions, later versions
use the simplex algorithm to solve a linear program-
ming problem [31, 32].

A derivative-free approach is done by Park and Shontz
in [33]. They use pattern search in combination with
backtracking line search to find a better vertex posi-
tion. The convergence is suboptimal as it depends on
search directions.

Rangarajan and Lew introduced the directional vertex
relaxation (DVR) algorithm [7]. It solves the optimiza-
tion problem by breaking it down to one dimension.
This is achieved by providing a smoothing direction
which can be chosen either randomly or by using pre-
vious knowledge. Within this one dimension the op-
timal solution can be found analytically. The major
concern about this method is its randomness of relax-
ation directions as it leads to an inefficient smoothing
with slow convergence.

Except Freitag’s linear programming approach, all
named optimization-based smoothing methods rely
on linear search directions. For volume meshes this
works fairly good, even though convergence is rather
slow, but using search directions on surface meshes
is not reasonable, because optimization is done along
a line and not on the surface. A common way to
deal with this problem is to perform the optimization
on the tangent plane and re-project the vertex onto
the surface. Finding the optimum cannot be guaran-
teed. Re-projection might even fail for complex ge-
ometries. Therefore, the search for optimal vertex po-
sitions should be restricted to the surface.

Zhang et al. [34] and Leng et al. [35, 36] present a

geometric flow-driven approach for tetrahedral mesh
smoothing. The methods use geometric partial differ-
ential equations to denoise the surface mesh and im-
prove element quality while being volume preserving.
For surface meshes emerging from geometry scanners,
a wide range of feature preserving denoising methods
exists [37, 38, 39, 40]. All these methods are not in
scope of this work as we concentrate on element qual-
ity optimization, not on surface denoising. We expect
an input mesh that represents its geometry correctly.

1.3 DMO

DMO solves the max-min problem in Equation (2) by
evaluating the vertex quality function with a greedy
algorithm on a uniform grid. The grid’s center of
gravity is set to the vertex that should be optimized.
The grid size is defined by the axis aligned bounding
box for the one-ring neighborhood and a scaling factor
ω. Each grid-point is considered as candidate position
where Equation (1) is evaluated, Figure 3. The vertex
is repositioned at the best candidate if this increases
its quality. After each iteration step the scaling factor
ω is reduced such that the new grid size is twice the
old grid spacing,

ω ← ω · 2/(n− 1), (4)

where n is the number of grid points in one dimension.
Furthermore, the grid is repositioned together with the
vertex. Candidate evaluation and grid downscaling are
repeated iteratively until the desired level of precision
is reached.

2. GENERALIZATION OF DISCRETE
MESH OPTIMIZATION

We reformulate DMO to cover surface and volume
meshes by using an appropriate parameter space. We
introduce the mapping of a uniform candidate grid
from parametric domain Ξd−k to real space Rd, with
d = 2, 3 and 0 ≤ k < d. The mapping function is
denoted by

x(ξ) : Ξd−k → Rd . (5)

161

Figure 3: Uniform grid with quality metric evaluation for
each candidate. A large green point represents good, a
small red one bad quality

In general, the surface can be locally described as a
smooth function,

s(ξ) : Ξd−k → Ξd , (6)

where Ξd is the local coordinate system with Ξd−k be-
ing the parameter-subspace. The transformation from
local to world coordinates is given as

Φ(ξ) : Ξd → Rd , (7)

and its inverse as

Φ−1(x) : Rd → Ξd . (8)

DMO works best if x(ξ) is known, i.e. a parametriza-
tion of the surface is given. Nevertheless, a surface
description is often missing. We present a local sur-
face estimation which is interpolating and tangential
in all vertices. The advantage of converging towards
an optimal mesh remains also on estimated surfaces.

Section 2.1 introduces our way of estimating smooth
surfaces. Features, such as sharp edges, cannot be
presented by smooth surfaces but also need to be pre-
served. Thus, Section 2.2 adds a feature detection ap-
proach. The application of DMO on surface meshes is
explained in Section 2.3. Section 2.4 defines the func-
tion space on which DMO is guaranteed to converge
locally towards the optimum.

2.1 Surface Estimation

The generalization of DMO allows smoothing on sur-
faces but often the surface is unknown, e.g. for meshes
from point cloud reconstruction. In such a case, sur-
face estimation is required. We present an approach
based on moving least squares which produces smooth,
vertex-interpolating surfaces.

Much research was done in estimating surface quan-
tities [41, 42, 43, 44]. Unfortunately, these methods
do not construct smooth surfaces. The transition be-
tween local surface estimations is often discontinuous.
Moving least squares methods are commonly used for

point cloud estimation [45, 46, 47, 48]. As we already
have a mesh, we can use simpler techniques to get a
surface estimation.

We base our approach on [49]. The method fits trun-
cated Taylor expansions to the nearest neighbors of
vertices. Its objective is actually to estimate differen-
tial quantities. We extend the method with a moving
least squares approach inspired by [45] for creating
a smooth surface estimation. Furthermore, we inten-
tionally break with the smoothness property at feature
edges to represent them correctly.

The surface is approximated at each vertex vk with
second order Taylor polynomials,

Tk(ξ) =

 ξ1
ξ2∑2

i=1

∑2
j=i aijξiξj

 , (9)

where we assume the normal and tangential vectors
of the mesh in each vertex to represent the Monge
coordinate system,e′1e′2

e′3

 =

n
t1
t2

 . (10)

The transformations from local coordinate system
(e′1, e

′
2, e
′
3) to world (e1, e2, e3) and its inverse are

Φk(ξ) = ok + ξ1e
′
1 + ξ2e

′
2 + ξ3e

′
3 (11)

Φ−1
k (x) = (e′1|e′2|e′3)T(x− ok) , (12)

where ok is the origin of the local coordinate system.

We chose second order polynomials in Equation (9) be-
cause we can determine the parameters aij with least
squares using only the one ring neighborhood of a ver-
tex. This results in a good approximation close to vk
which degrades with distance. Always using the local
surface estimation of the nearest neighbor would be an
easy way to overcome this problem, but doing so intro-
duces discontinuous transitions on the Voronoi edges,
Figure 4(a). Instead, we perform an interpolation
between the local surfaces of one-ring-neighborhood-
vertices Nk, with the center vertex vk,

sk(x) =

∑
vi∈Nv

ωi(x)Φ(Ti(Φ
−1
k (x)))∑

vi∈Nv
ωi(x)

, (13)

where the inverse squared distance weighting ωi(x) =
1/‖x − vi + ε‖2 with ε > 0 is applied to increase the
influence of close vertices. The constant ε prohibits
ωi(vi) → ∞ and should be chosen as small as possi-
ble. Furthermore, Nk also contains vk itself. Thus,
we have a smooth, vertex-interpolating surface esti-
mation, Figures 4(b) and 5.

Note that sk(x) is stated in world coordinates, not in
local coordinates as in Equation (6). This is just a

162

(a) Using nearest neighbor
surface estimation.

(b) Interpolating between
local surface estimations.

Figure 4: Surface estimation with second order polyno-
mials (dashed lines) and different transitions(blue line).

Figure 5: Surface estimation on a triangle mesh using
interpolation between local surfaces.

matter of formulation. Equation (13) could also be
stated in local coordinates but that would just make
it more tedious to read.

The surface estimation is computed locally for each
vertex of the original mesh. As vertices move during
optimization, we always use the surface estimation of
the closest vertex in the original mesh. In the begin-
ning, each vertex will be its own nearest neighbor but
due to mesh optimization, vertices might move quite
far.

The surface estimation presented so far is only reason-
able for smooth meshes. Sharp edges cannot be rep-
resented by second order Taylor polynomials. There-
fore, we add a simple feature detection which takes
care of boundaries and sharp edges, see Section 2.2.
At feature vertices, a smooth surface estimation is not
reasonable. Instead, the local surface estimation needs
to be discontinuous. We estimate the surface at a fea-
ture vertex with tangential planes, separated by the
feature edge, Figure 6. If a vertex is part of a feature
edge, this edge splits the incident faces of the vertex
in two sections. The normal of a tangential plane is
the average normal of the incident faces on a section.

2.2 Feature Detection

In geometry processing, feature detection is a core is-
sue and therefore well studied, [50, 51, 52, 53, 54].
Plenty of methods exist that can also handle noisy in-
put data, [55, 56, 57]. We expect our input mesh to
represent the geometry correctly and therefore do not
require such sophisticated techniques.

Figure 6: Surface estimation for a vertex on a feature
edge (green).

We detect feature vertices by evaluating the angle be-
tween normals of two adjacent faces. If the angle is
above a certain threshold, we consider the edge and
its incident vertices as features. In our tests we used a
threshold angle between 30 and 50 degrees, depending
on the input mesh.

Geometric consistency does not necessarily require fea-
ture vertices to be static. A feature vertex vk can be
smoothed if it has exactly two incident feature edges
which are not shared by one face. For example, in
the mesh cube, Figure 7(a), only the corner vertices
need to remain fixed. All other feature vertices can
move along the edges without changing the geometry.
Feature edge estimation is analogue to the surface es-
timation method in Section 2.1 but with k = 2, and
the Taylor polynomial

Tk(ξ) =

 ξ1
0
a ξ21

 , (14)

where e′1 and e′3 must lie in the plane described by vk
and its adjacent feature vertices. With feature edge es-
timation, smoothing is also possible on more complex
feature edges, e.g. Figure 7(b).

In the special case that one face contains only feature
vertices, none of these vertices may be repositioned.
This special case appears when two feature edges inter-
sect, e.q. the faces in the corners of cube, Figure 7(a).

2.3 DMO on Surface Meshes

The local surface around a vertex vk is assumed to be
either given or estimated, e.g. with the method in Sec-
tion 2.1. Vertex vk is positioned at xk and has the local
coordinates ξk, Figure 8(a). The candidate points for
DMO are positioned around vk in parametric space
on a uniform grid with its center at ξk, Figure 8(b).
For evaluating the quality metric the candidates are
mapped onto the surface with Equation (5). The uni-
form grid is moved to the current optimum and scaled
down, Figure 8(c). This is repeated until the desired
level of precision is reached. Scaling down the grid

163

(a) cube (b) sculpt

Figure 7: Feature edges for different meshes shaded in
black.

more than two times did not have significant impact
on quality in our test cases. Finally, the vertex is
repositioned at the best candidate, Figure 8(d). Algo-
rithm 1 states the vertex optimization routine adapted
for surface meshes.

The resulting mesh highly depends on the chosen qual-
ity metric. We got satisfying results using the mean
ratio metric, see Section 3, but for other cases alternate
metrics might be more suitable. As DMO’s implemen-
tation is independent of the quality metric, users can
plug in a different quality metric in the algorithm to
obtain more appropriate results for their specific ap-
plication.

2.4 Definition of Optimizable Function
Space

We define the function space Fh containing all func-
tions that can be optimized by DMO using the initial
grid size h.

Proposition 1. A function f(ξ) : Ξd−k → R with
0 ≤ k < d is in Fh if it satisfies:

• f(ξ) contains exactly one maximum fmax =
f(ξmax) and is strictly decaying from it in all di-
rections.

• Given nested balls

Si = {ξ ∈ Rd : ‖ξ − o‖ = ri , i = 1, 2} (15)

with r1 = h/
√
d, r2 = 3r1, and their shared origin

o satisfying

‖ξmax − o‖ ≤ r1 . (16)

Assume a grid cell defined by its set of vertices
Gh, with each vertex lying on the ball S1, Fig-
ure 9. If for any orientation of the cell it holds,

max
ξ∈Gh

f(ξ) ≥ max
ξ∈S2

f(ξ), (17)

then DMO will reach the optimum.

Proof. Assume fmax inside a grid cell defined by its
set of vertices Gh, then Gh must contain the maximal
value of all grid vertices to ensure convergence towards
fmax. Equation (17) states that the maximal value
of Gh is larger than all values on S2. Considering,
that f(ξ) is strictly decaying, it follows that no vertex
‖v − o‖ ≥ r2 has a value greater than the maximum
of Qmax.

For the practical application of DMO it is not reason-
able to check a function to satisfy Proposition 1 each
time an optimization should be performed. Instead
we include an additional step in the DMO algorithm.
Prior to reducing the grid size it is checked, if the can-
didate node is on the grid-boundary. In this case, the
grid size is kept unchanged and the greedy search is
repeated but the center of the grid is moved to the
last found optimum, Algorithm 1 Line 19-20. Thus,
if the initial grid size was too large, the grid is iter-
atively moved towards the optimum. This heuristics
produced good results in all cases we have applied our
method.

As vertices never leave the estimated surface, DMO
is point-wise surface preserving. In extreme cases, it
might be possible that an edge ”cuts” through the
surface but this behavior was never experienced in any
example. The same holds for volume preservation.

3. RESULTS

We compare the generalized DMO to other smoothing
methods. In Section 3.1 the method is applied to tri-
angle surface meshes as they are common in computer
graphics. In Section 3.2 generalized DMO is compared
to Stellar on tetrahedral meshes.

A quality comparison is given in terms of the mean
ratio metric [58, 59, 60, 61, 31, 7], which is defined for
triangles,

qmtri = 4
√

3
A∑3
i=1 l

2
i

, (18)

and tetrahedrons,

qmtet = 12
3
√

9
V 2/3∑6
i=1 l

2
i

, (19)

where A is the signed area of the triangle, V the signed
volume of the tetrahedron, and li is the length of their
incident edges. Note that this quality measure does
not depend on free parameters that have to be input
by the user. Therefore, no user interaction is required.
We display mesh-quality by lexicographically ordering
the elements according to their quality. The element
index is given in logarithmic scaling as the elements
with lowest quality are the most interesting ones.

164

e′1

e′2

e1

e2

(a) Vertex with world and
local coordinate system and
estimated surface.

(b) Candidate positions in
parametric space and on the
surface.

(c) Refinement around opti-
mal candidate.

(d) Smoothed mesh.

Figure 8: DMO on surface mesh. The blue line represents the parameter space on which the vertices are distributed
uniformly.

Algorithm 1 Discrete optimization of vertex position

1: function OptimizeVertexPosition(v, Ne(v), n, ngreedy)

2: ω ← 0.5 . Scaling-factor for grid

3: for counter = 0 to ngreedy do

4: (ξ1,min, ξ2,min, ξ1,max, ξ2,max) = GetGrid(v, Ne(v), n, ω)

5: Create quality grid [n][n]

6: for i, j = 0 to n− 1 do

7: ξ1 ← i
n−1

ξ1,min + n−1−i
n−1

ξ1,max

8: ξ2 ← j
n−1

ξ2,min + n−1−j
n−1

ξ2,max

9: ξ3 ← s(ξ1, ξ2) . Evaluate Equation (13)

10: v′ ← Φ(ξ1, ξ2, ξ3) . Map from local to world coordinates

11: quality grid [i][j] ← VertexQuality(v′, Ne(v))

12: qmax ← −∞, imax ← 0, jmax ← 0

13: for i, j = 0 to n− 1 do

14: if quality grid [i][j] > qmax then

15: qmax ← quality grid [i][j]

16: imax ← i, jmax ← j

17: if qmax > VertexQuality(v,Ne(v)) then

18: ξ1,opt ← imax
n−1

ξ1,min + n−1−imax
n−1

ξ1,max

19: ξ2,opt ← jmax
n−1

ξ2,min + n−1−jmax
n−1

ξ2,max

20: ξ3,opt ← s(ξ1,opt, ξ2,opt)

21: v ← Φ(ξ1,opt, ξ2,opt, ξ3,opt)

22: if i == 0 or j == 0 or i == n− 1 or j == n− 1 then

23: go to line 4

24: ω ← ω · 2/(n− 1) . Reduce scaling factor

return

165

o S1

S2

fmax

Gh

Figure 9: The best candidate of grid cell Gh must have
a larger value then any point on S2 to guarantee conver-
gence towards fmax.

3.1 Surface Meshes

We compare our method to Taubin smoothing [18].
We use the implementation in Meshlab [62] with de-
fault parameters. Other smoothing methods were also
tested in Meshlab but they either did not improve
quality or changed the geometry so significantly that
a comparison is pointless. For the presented examples
the real surface is unknown. Therefore, DMO uses
surface estimation of Section 2.1.

The first comparison is done on mesh tweety with 6 752
vertices and a minimal quality 0.048, Figure 10(a).
Taubin and DMO show both visually good improve-
ments, Figures 10(b) and 10(c). However, Taubin
smoothing leaves a significant amount of bad shaped
triangles with a minimal quality of 0.089. DMO in-
stead improves quality considerably to 0.484.

Similar behavior of the smoothing methods is observed
on mesh rocker-arm with 10 044 vertices and a minimal
quality of 0.077, Figure 11(a). Taubin smoothing im-
proves quality overall but cannot get rid of low quality
triangles resulting in a minimal quality of 0.241, Fig-
ure 11(b). DMO eliminates bad shaped elements com-
pletely giving a minimal quality of 0.599, Figure 11(c).
Also, even with default parameters, the mesh becomes
visibly more round at corners when applying Taubin
smoothing. The shape remains unchanged by DMO.

On the mesh hand with 50 085 vertices, Figure 12(a),
Taubin cannot deal with the more complex geometry,
reducing minimal element quality from 0.343 to 0.033,
Figure 12(b). DMO improves quality to 0.468, Fig-
ure 12(c).

The mesh filigree with 514 300 vertices results from
marching cubes and therefore contains very thin tri-
angles with a minimal element quality of 0.104, Fig-
ure 13. In this example, Taubin smoothing reaches
a higher minimal element quality than DMO, namely

(a) Original (b) Taubin (c) DMO

Figure 10: Comparison of Taubin smoothing and DMO
on surface mesh tweety.

0.218 in comparison to 0.143. Considering that Taubin
smoothing may leave the surface, this is not a surpris-
ing result. The mesh is mostly regular and Laplace-
based smoothers are highly efficient in such cases.
DMO instead is bound to its surface estimation. If
geometric consistency is not required, then Taubin
smoothing is preferable here.

Also mesh shoe has some thin triangles which can-
not be improved, Figure 14. Therefore, the minimal
element quality remains 0.018. Also Taubin smooth-
ing does not improve quality. Instead it reduces it to
0.017. Besides the worst elements, DMO has a signif-
icant impact.

The last surface mesh example is augustus with 9 758
vertices. Again, DMO improves minimal element qual-
ity from 0.094 to 0.241. Taubin also improves minimal
quality to 0.145. Taking a look at Figure 15 Taubin
smoothing only improves the worst element but de-
creases quality of other bad shaped elements, whereas
DMO increases quality of the worst 1 000 elements.

3.2 Volume Meshes

We compare DMO to Stellar [30], a tetrahedral mesh
improvement software. We only allow topology-
consistent optimizations to create a reasonable com-
parison. Stellar can also smooth boundary vertices.
A quadric error metric is added to the optimization
problem to keep the boundary mostly unchanged.

166

(a) Original (b) Taubin (c) DMO

Figure 11: Comparison of Taubin smoothing and DMO
on surface mesh rocker-arm.

(a) Original (b) Taubin (c) DMO

Figure 12: Comparison of Taubin smoothing and DMO
on surface mesh hand.

(a) Filigree

(b) Original (c) Taubin (d) DMO

Figure 13: Comparison of Taubin smoothing and DMO
on surface mesh filigree.

167

(a) Original (b) Taubin (c) DMO

Figure 14: Comparison of Taubin smoothing and DMO
on surface mesh shoe.

(a) Original (b) Taubin (c) DMO

Figure 15: Comparison of Taubin smoothing and DMO
on surface mesh augustus.

0.0

0.2

0.4

0.6

0.8

1.0

q

100 101 102 103 104 105

index

Original

Stellar
DMO

Figure 16: Volume mesh staypuft [30].

When deactivating boundary smoothing, DMO and
Stellar converge towards the same result, Figure 16.
This is expected as both solve the same optimiza-
tion problem. The mesh staypuft from [30] was gener-
ated by Adam Bargteil’s implementation of variational
tetrahedral meshing [63].

Including boundaries, DMO has more freedom to move
vertices along the boundary. Stellar penalizes bound-
ary movement. Instead, DMO uses boundary infor-
mation to put hard constraints on the optimization.
This leads to much better quality, e.g. on mesh cube,
Figure 17(a), from [30] using NETGEN [64]. Stellar
can only slightly improve the minimal element quality
from 0.628 to 0.635 in comparison to fixed boundaries.
DMO reaches a minimal quality of 0.758. Further-
more, Stellar changed the boundary, e.g. the corner
vertices. For numerical simulations this might be a
critical issue.

The tetrahedral mesh sphere, Figure 18(a), created
with TetGen [5], benefits also from boundary smooth-
ing. Even though, the surface meshes of Stellar, Fig-
ure 18(b), and DMO, Figure 18(c) look disturbed,
both improve tetrahedral mesh quality significantly,

168

(a) Original (b) Stellar (c) DMO

0.6

0.7

0.8

0.9

1.0

q

100 101 102 103 104

index

Original Stellar

DMO Stellar w. Boundaries

DMO w. Boundaries

Figure 17: Volume mesh cube.

Figure 18. Without boundary smoothing Stellar and
DMO reach a minimal quality of 0.361. With bound-
ary smoothing Stellar creates a minimal quality of
0.509, DMO of 0.545. Again, it has to be considered
that some boundary vertices of Stellar do not lie pre-
cisely on the sphere anymore.

Observing Figures 18(b) and 18(c) one might realize
that the surface meshes of DMO and Stellar look worse
than the original. This is caused by optimizing for
tetrahedral quality instead of triangle quality. Low
quality elements are improved by decreasing the qual-
ity of their surrounding elements. Therefore, a former
good looking surface mesh becomes disturbed, even
though the minimal element quality increases.

Surface preservation constraints optimization. The
mesh sculpt, Figure 19, from [30] was generated by
Pierre Alliez’s implementation of variational tetrahe-
dral meshing [63]. On this mesh, Stellar creates a
minimal element quality of 0.518, DMO 0.386. Slight
movements on feature edges may have severe impact
on element quality. DMO restricts movement to the
feature edge, whereas Stellar has more freedom.

More complex shapes are presented with mesh fandisk,
bracket-2, and bracket-3, Figures 20 to 22. The surface
meshes are provided by and generated with JIGSAW
[65]. The tetrahedral meshes were generated with Tet-
Gen. For uncertain reasons, Stellar cannot handle
these meshes well. DMO performs as expected and

(a) Original (b) Stellar (c) DMO

0.0

0.2

0.4

0.6

0.8

1.0

q

100 101 102

index

Original Stellar

DMO Stellar w. Boundaries

DMO w. Boundaries

Figure 18: Volume mesh sphere.

(a) Original (b) Stellar (c) DMO

Figure 19: Volume mesh sculpt.

169

DMO / Original Stellar / Original

cube 1.0000 0.9995
sphere 0.9926 1.0044
sculpt 1.0002 0.9995
fandisk 1.0040 0.9998
bracket-2 1.0034 1.0000
bracket-3 1.0043 1.0000

Table 1: Relative volume of optimized meshes.

improves quality, when boundary vertices are also op-
timized. For fixed boundaries, DMO cannot improve
minimal element quality.

Our method preserves the described volume very well.
Table 1 compares the mesh volume before and after
optimization. The volumes never differ more than 1%.

DMO was developed for being executed on a GPU,
which allows smoothing in the range of a few seconds.
For the optimization of only interior vertices in tetra-
hedral meshes, DMO repositions about 1.1·105 vertices
per second, e.g. DMO requires one second to perform
10 iterations on a mesh with 10 000 vertices. In most
cases, 10 iterations are enough to converge towards the
optimum. Unfortunately, so far the surface estimation
is only implemented on CPU. Therefore, a valid perfor-
mance statement cannot be done for surface optimiza-
tion. We expect the performance to be comparable as
surface estimation is mostly a pre-processing step. On
CPU the performance for tetrahedral meshes drops to
230 vertices per second. Therefore, using a GPU is
highly recommended.

4. CONCLUSION

We presented a method to improve surface and volume
meshes. Combining DMO’s geometry- and topology-
consistency with its local optimality, results in a
method which produces high quality meshes. Surface
mesh quality can be significantly improved without the
need of user interaction as it is required in other meth-
ods. This is due to the mean ratio metric used for the
examples presented above. We demonstrated the ef-
fectiveness of our method for different representative
examples including surface and volume meshes. Fur-
thermore, we showed that smoothing boundary ver-
tices of tetrahedral meshes has significant impact on
their quality.

In future work we want to extend DMO with topologi-
cal optimizations [30], [4]. DMO is perfectly suited for
running on GPUs. We plan to develop a GPU imple-
mentation and compare performance to other smooth-
ing techniques.

(a) Original

(b) Stellar

(c) DMO

Figure 20: Volume mesh fandisk.

170

(a) Original (b) Stellar (c) DMO

Figure 21: Volume mesh bracket-2.

(a) Original (b) Stellar (c) DMO

Figure 22: Volume mesh bracket-3.

ACKNOWLEDGMENT

This work has been supported by the DFG grant
’Rechenleistungsoptimierte Software-Strategien für
auf unstrukturierten Gittern basierende Anwendungen
in der Ozeanmodellierung’ (GR 1107/3-1).

References

[1] Freitag L., Plassmann P., Jones M. “An efficient
parallel algorithm for mesh smoothing.” Tech.
rep., Argonne National Lab., IL (United States),
1995

[2] Herrmann L.R. “Laplacian-isoparametric grid
generation scheme.” Journal of the Engineering
Mechanics Division, vol. 102, no. 5, 749–907, 1976

[3] Jones R. “QMESH: A self-organizing mesh gen-
eration program.” Tech. rep., Sandia Labs., Al-
buquerque, N. Mex.(USA), 1974

[4] Dassi F., Kamenski L., Si H. “Tetrahedral mesh
improvement using moving mesh smoothing and
lazy searching flips.” Procedia engineering, vol.
163, 302–314, 2016

[5] Si H. “TetGen, a Delaunay-based quality tetra-
hedral mesh generator.” ACM Transactions on
Mathematical Software (TOMS), vol. 41, no. 2,
11, 2015

[6] Wicke M., Ritchie D., Klingner B.M., Burke S.,
Shewchuk J.R., O’Brien J.F. “Dynamic local
remeshing for elastoplastic simulation.” ACM
Transactions on graphics (TOG), vol. 29, no. 4,
49, 2010

[7] Rangarajan R., Lew A.J. “Provably Robust Di-
rectional Vertex Relaxation for Geometric Mesh
Optimization.” SIAM Journal on Scientific Com-
puting, vol. 39, no. 6, A2438–A2471, 2017

[8] Zint D., Grosso R. “Discrete Mesh Optimiza-
tion on GPU.” 27th International Meshing
Roundtable, 2018

[9] Zint D., Grosso R., Aizinger V., Köstler H. “Gen-
eration of Block Structured Grids on Complex
Domains for High Performance Simulation (ac-
cepted).” Numerical Geometry, Grid Generation
and Scientific Computing, 2019

[10] Field D.A. “Laplacian smoothing and Delau-
nay triangulations.” International Journal for
Numerical Methods in Biomedical Engineering,
vol. 4, no. 6, 709–712, 1988

171

[11] Blacker T.D., Stephenson M.B. “Paving: A new
approach to automated quadrilateral mesh gen-
eration.” International Journal for Numerical
Methods in Engineering, vol. 32, no. 4, 811–847,
1991

[12] Blacker T.D., Stephenson M.B., Canann S.
“Analysis automation with paving: a new quadri-
lateral meshing technique.” Advances in engi-
neering software and workstations, vol. 13, no.
5-6, 332–337, 1991

[13] Canann S.A., Liu Y.C., Mobley A.V. “Automatic
3D surface meshing to address today’s industrial
needs.” Finite Elements in Analysis and Design,
vol. 25, no. 1-2, 185–198, 1997

[14] Freitag L.A. “On combining Laplacian and
optimization-based mesh smoothing techniques.”
ASME applied mechanics division-publications-
amd, vol. 220, 37–44, 1997

[15] George P., Borouchaki H. Delaunay Triangu-
lation and Meshing: Application to Finite Ele-
ments. Hermès, 1998

[16] Knupp P.M. “Winslow smoothing on two-
dimensional unstructured meshes.” Engineering
with Computers, vol. 15, no. 3, 263–268, 1999

[17] Zhou T., Shimada K. “An Angle-Based Approach
to Two-Dimensional Mesh Smoothing.” IMR, pp.
373–384. 2000

[18] Taubin G. “A signal processing approach to fair
surface design.” Proceedings of the 22nd annual
conference on Computer graphics and interactive
techniques, pp. 351–358. ACM, 1995

[19] Blom F.J. “Considerations on the spring anal-
ogy.” International journal for numerical meth-
ods in fluids, vol. 32, no. 6, 647–668, 2000

[20] Farhat C., Degand C., Koobus B., Lesoinne M.
“Torsional springs for two-dimensional dynamic
unstructured fluid meshes.” Computer methods
in applied mechanics and engineering, vol. 163,
no. 1-4, 231–245, 1998

[21] Persson P.O., Strang G. “A simple mesh gener-
ator in MATLAB.” SIAM review, vol. 46, no. 2,
329–345, 2004

[22] Baker T.J. “Mesh movement and metamorpho-
sis.” Engineering with Computers, vol. 18, no. 3,
188–198, 2002

[23] De Almeida V.F. “Domain deformation map-
ping: application to variational mesh genera-
tion.” SIAM Journal on Scientific Computing,
vol. 20, no. 4, 1252–1275, 1999

[24] Rumpf M. “A variational approach to optimal
meshes.” Numerische Mathematik, vol. 72, no. 4,
523–540, 1996

[25] Freitag L.A., Knupp P.M. “Tetrahedral mesh im-
provement via optimization of the element con-
dition number.” International Journal for Nu-
merical Methods in Engineering, vol. 53, no. 6,
1377–1391, 2002

[26] Kim J. “A Multiobjective Mesh Optimization Al-
gorithm for Improving the Solution Accuracy of
PDE Computations.” International Journal of
Computational Methods, vol. 13, no. 01, 1650002,
2016

[27] Knupp P. “Updating meshes on deforming
domains: An application of the target-matrix
paradigm.” International Journal for Numerical
Methods in Biomedical Engineering, vol. 24, no. 6,
467–476, 2008

[28] Xu K., Gao X., Chen G. “Hexahedral mesh qual-
ity improvement via edge-angle optimization.”
Computers & Graphics, vol. 70, 17–27, 2018

[29] Zavattieri P.D., Dari E.A., Buscaglia G.C. “Opti-
mization strategies in unstructured mesh genera-
tion.” International Journal for Numerical Meth-
ods in Engineering, vol. 39, no. 12, 2055–2071,
1996

[30] Klingner B.M., Shewchuk J.R. “Aggressive tetra-
hedral mesh improvement.” Proceedings of the
16th international meshing roundtable, pp. 3–23.
Springer, 2008

[31] Freitag L., Jones M., Plassmann P. “A parallel al-
gorithm for mesh smoothing.” SIAM Journal on
Scientific Computing, vol. 20, no. 6, 2023–2040,
1999

[32] Freitag L.A., Plassmann P., et al. “Local
optimization-based simplicial mesh untangling
and improvement.” International Journal for Nu-
merical Methods in Engineering, vol. 49, no. 1,
109–125, 2000

[33] Park J., Shontz S.M. “Two derivative-free op-
timization algorithms for mesh quality improve-
ment.” Procedia Computer Science, vol. 1, no. 1,
387–396, 2010

[34] Zhang Y., Xu G., Bajaj C. “Quality mesh-
ing of implicit solvation models of biomolecular
structures.” Computer Aided Geometric Design,
vol. 23, no. 6, 510–530, 2006

[35] Leng J., Zhang Y., Xu G. “A novel geomet-
ric flow-driven approach for quality improvement

172

of segmented tetrahedral meshes.” Proceedings
of the 20th international meshing roundtable, pp.
347–364. Springer, 2011

[36] Leng J., Zhang Y., Xu G. “A novel geometric
flow approach for quality improvement of multi-
component tetrahedral meshes.” Computer-Aided
Design, vol. 45, no. 10, 1182–1197, 2013

[37] Fleishman S., Drori I., Cohen-Or D. “Bilateral
mesh denoising.” ACM transactions on graphics
(TOG), vol. 22, no. 3, 950–953, 2003

[38] Jones T.R., Durand F., Desbrun M. “Non-
iterative, feature-preserving mesh smoothing.”
ACM Transactions on Graphics (TOG), vol. 22,
no. 3, 943–949, 2003

[39] Yu Y., Zhou K., Xu D., Shi X., Bao H., Guo
B., Shum H.Y. “Mesh editing with poisson-based
gradient field manipulation.” ACM Transactions
on Graphics (TOG), vol. 23, no. 3, 644–651, 2004

[40] Choudhury P., Tumblin J. “The trilateral filter
for high contrast images and meshes.” ACM SIG-
GRAPH 2005 Courses, p. 5. ACM, 2005

[41] Boissonnat J.D., Flototto J. “A Local Coor-
dinate System on a Surface.” Proceedings of
the Seventh ACM Symposium on Solid Mod-
eling and Applications, SMA ’02, pp. 116–
126. ACM, New York, NY, USA, 2002. URL
http://doi.acm.org/10.1145/566282.566302

[42] Goldfeather J., Interrante V. “A novel cubic-
order algorithm for approximating principal di-
rection vectors.” ACM Transactions on Graphics
(TOG), vol. 23, no. 1, 45–63, 2004

[43] Kalogerakis E., Nowrouzezahrai D., Simari P.,
Singh K. “Extracting lines of curvature from
noisy point clouds.” Computer-Aided Design,
vol. 41, no. 4, 282–292, 2009

[44] Demarsin K., Vanderstraeten D., Volodine T.,
Roose D. “Detection of closed sharp edges in
point clouds using normal estimation and graph
theory.” Computer-Aided Design, vol. 39, no. 4,
276–283, 2007

[45] Lancaster P., Salkauskas K. “Surfaces generated
by moving least squares methods.” Mathematics
of computation, vol. 37, no. 155, 141–158, 1981

[46] Levin D. “The approximation power of moving
least-squares.” Mathematics of Computation of
the American Mathematical Society, vol. 67, no.
224, 1517–1531, 1998

[47] Fleishman S., Cohen-Or D., Silva C.T. “Robust
moving least-squares fitting with sharp features.”
ACM transactions on graphics (TOG), vol. 24,
no. 3, 544–552, 2005

[48] Guennebaud G., Gross M. “Algebraic point
set surfaces.” ACM Transactions on Graphics
(TOG), vol. 26, no. 3, 23, 2007

[49] Cazals F., Pouget M. “Estimating differential
quantities using polynomial fitting of osculating
jets.” Computer Aided Geometric Design, vol. 22,
no. 2, 121–146, 2005

[50] Darom T., Keller Y. “Scale-invariant features for
3-D mesh models.” IEEE Transactions on Image
Processing, vol. 21, no. 5, 2758–2769, 2012

[51] Ohtake Y., Belyaev A., Seidel H.P. “Ridge-valley
lines on meshes via implicit surface fitting.” ACM
transactions on graphics (TOG), vol. 23, no. 3,
609–612, 2004

[52] Watanabe K., Belyaev A.G. “Detection of salient
curvature features on polygonal surfaces.” Com-
puter Graphics Forum, vol. 20, no. 3, 385–392,
2001

[53] Hubeli A., Gross M. “Multiresolution feature ex-
traction for unstructured meshes.” Proceedings of
the Conference on Visualization’01, pp. 287–294.
IEEE Computer Society, 2001

[54] Zaharescu A., Boyer E., Varanasi K., Horaud R.
“Surface feature detection and description with
applications to mesh matching.” 2009 IEEE Con-
ference on Computer Vision and Pattern Recog-
nition, pp. 373–380. IEEE, 2009

[55] Kim H.S., Choi H.K., Lee K.H. “Feature detec-
tion of triangular meshes based on tensor voting
theory.” Computer-Aided Design, vol. 41, no. 1,
47–58, 2009

[56] Wang X.c., Cao J.j., Liu X.p., Li B.j., Shi X.q.,
Sun Y.z. “Feature detection of triangular meshes
via neighbor supporting.” Journal of Zhejiang
University Science C, vol. 13, no. 6, 440–451, 2012

[57] Zhihong M., Guo C., Mingxi Z. “Robust de-
tection of perceptually salient features on 3D
meshes.” The Visual Computer, vol. 25, no. 3,
289–295, 2009

[58] Amenta N., Bern M., Eppstein D. “Optimal point
placement for mesh smoothing.” Journal of Al-
gorithms, vol. 30, no. 2, 302–322, 1999

[59] Bank R.E., Smith R.K. “Mesh smoothing using
a posteriori error estimates.” SIAM Journal on
Numerical Analysis, vol. 34, no. 3, 979–997, 1997

173

[60] Bank R. “A Software Package for Solving Elliptic
Partial Differential Equations–Users’ Guide 7.0.”
Frontiers in Applied Mathematics, vol. 15, 1998

[61] Canann S.A., Tristano J.R., Staten M.L., et al.
“An Approach to Combined Laplacian and
Optimization-Based Smoothing for Triangular,
Quadrilateral, and Quad-Dominant Meshes.”
IMR, pp. 479–494. Citeseer, 1998

[62] Cignoni P., Callieri M., Corsini M., Dellepiane
M., Ganovelli F., Ranzuglia G. “Meshlab: an
open-source mesh processing tool.” Eurographics
Italian chapter conference, vol. 2008, pp. 129–136.
2008

[63] Alliez P., Cohen-Steiner D., Yvinec M., Desbrun
M. “Variational tetrahedral meshing.” ACM SIG-
GRAPH 2005 Courses, p. 10. ACM, 2005

[64] Schöberl J. “NETGEN An advancing front
2D/3D-mesh generator based on abstract rules.”
Computing and visualization in science, vol. 1,
no. 1, 41–52, 1997

[65] Engwirda D. “Conforming restricted Delau-
nay mesh generation for piecewise smooth com-
plexes.” Procedia engineering, vol. 163, 84–96,
2016

174

