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ABSTRACT

Formal methods allow for building correct-by-construction software with provable guarantees. The formal develop-
ment presented here resulted in certified executable functions for mesh generation. The term certified means that
their correctness is established via an artifact, or certificate, which is a statement of these functions in a formal
language along with the proofs of their correctness. The term is meaningful only when qualified by a specific set
of properties that are proven. This manuscript elaborates on the precise statements of the properties being proven
and their role in an implementation of a version of the Isosurface Stuffing algorithm by Labelle and Shewchuk. This
work makes use of the Calculus of Inductive Constructions for defining executable functions, stating their properties,
and proving these properties via a direct examination of these functions (the property of liveness). The certificate is
made available for inspection and execution using the Coq proof assistant.

Keywords: guaranteed quality mesh generation, formal methods, correct-by-construction, certified
software

1. INTRODUCTION Inria [7}[8], have made progress in the development
and the use of formal methods and functional pro-

Formal methods have undergone a rapid development gramming towards managing software correctness and

in recent years. There are a number of reasons for maintainability.

this phenomenon. First, as algorithms and their soft-

ware implementations are becoming increasingly so- This work is the second formal verification in the area
phisticated, they require a corresponding increase in of mesh generation, to the best of the author’s knowl-
the efforts to argue about the properties of the results edge, that exhibits the property of liveness |9], i.e.,
they produce. For a number of complex algorithms, being connected to the implementation via machine-
like unstructured guaranteed quality mesh generation, checked proofs. The property of liveness increases the
the complexity of stating and proving their specifica- level of confidence in the correctness, as the proofs
tions necessitates multiple manuscripts and pushes the make use of the properties of the actual operations
limits of the traditional paper-and-pencil approach. used in the code, not just abstracted models of those
Second, parallel algorithms, which have been devel- operations. The first work was published by Chernikov
oped for virtually all areas of computing, often bear and Xu [10] on the correctness of a version of a March-
another order-of-magnitude intricacy factor over the ing Cubes algorithm [11]. The present work proves
corresponding sequential algorithms due to numerous certain correctness properties of the Isosurface Stuffing
ways a parallel system can process and move data. algorithm [12], and also differs from the previous [10]
Third, as automated systems are becoming increas- in two major aspects. The first one is that it works
ingly integrated, a failure of one component has ram- with tetrahedra, not just triangular faces. The sec-
ifications for the whole software-hardware system and ond difference is in the proof approach. The previous
can lead to costly and/or dangerous consequences. A work [10] used proofs via computation, i.e., the prop-
number of major organizations, including Amazon |1, erties being proven were embedded in the functions
Microsoft [2|, Twitter [3], Intel [4], MIT [5,/6], and computed as part of the proof. The present work sep-

147



arates the proofs into two parts: propositional spec-
ifications that state the properties being proven, and
the actual proofs that establish that these specifica-
tions hold. As a result, the present approach is easier
to read and maintain. Another known work, in for-
mally proving properties of a plane Delaunay triangu-
lation algorithm, is that of Dufourd and Bertot [13].
The work [13] does not exhibit the property of liveness
as it relies only on axiomatization, not implementa-
tion, of real numbers. The underlying number type in
the present work is integers, which is implemented in
the standard library of the Coq environment [8] being
used, and suitable due to the lattice-based nature of
the algorithm being studied. When required by the
algorithm, the intersections with the surface are com-
puted using integer arithmetic to within a finite pre-
cision.

The development presented herein resulted in certified
executable functions for mesh generation. The term
certified means that their correctness is established via
an artifact, or certificate, which is a statement of these
functions in a formal language along with the proofs of
their correctness. The term is meaningful only when
qualified by a specific set of properties that are proven.
The functions whose properties are being proven and
the precise formal statements of their certified prop-
erties are elaborated further down in this manuscript.
The certificate in the form of an accompanying Coq
script is made available |14]. As can be seen from the
Venn diagram in Figure [I} only a subset of the entire
implementation is involved in the proof of the proper-
ties stated below. A certificate with a formal proof of
another set of properties may involve a different subset
of functions.

executable

certificate

certified

specifications other
executable
& . executable
functions .
proofs functions

(extracted)

Figure 1: A Venn diagram for the components of cer-
tified executable software. The parts described here are
in yellow.

Published in 2007 by Labelle and Shewchuk [12], the
Isosurface Stuffing (IS) algorithm solved a longstand-
ing problem in tetrahedral meshing of geometrically
complex shapes, that of achieving practically signifi-
cant guaranteed dihedral angle bounds. Among other
favorable properties of this algorithm are its fast ex-
ecution, mesh gradation, placement of mesh bound-
ary vertices exactly (to within a tolerance) onto the
domain boundaries, as well as certain fidelity guar-
antees. Conceptually, the IS algorithm is similar to
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the well-known Marching Cubes (MC) algorithm [11].
Both algorithms employ a regular cubical grid to cover
the region of interest. The IS algorithm uses a body
centered cubic (BCC) lattice that is tessellated into a
structured tetrahedral grid. Both the MC and the IS
algorithms evaluate each vertex of the corresponding
grid using a given cut function, which returns one of
three values, corresponding to the vertex being inside,
outside, or on the surface of the shape defined by this
function. Depending on the local combination of these
values in the vertices of a cube, the MC algorithm out-
puts one of the predetermined stencils, which is a set
of triangles that approximates the surface inside this
cube. The IS algorithm evaluates the cut function in
the vertices of a structured tetrahedron and outputs
one of predefined sets of stencil tetrahedra (referred
to as unstructured below). Both algorithms also make
use of approximated locations of zero values of the
cut function along the edges of the respective cubes or
tetrahedra.

What distinguishes the IS algorithm from the MC and
its variations is the presence of proofs that guarantee a
priori, i.e., before the execution, that the dihedral and
certain other angles will be bounded by known con-
stant values. Due to a large number of cases to exam-
ine and, most importantly, to the unknown locations
of the zero values within respective edges, these proofs
would be next to impossible to construct manually.
Instead, the IS authors implemented and described a
computer-assisted approach where the computation of
the angle bounds is done in software with the use of
interval arithmetic and of recursive bisection of the pa-
rameter space. What was not described, however, is an
a priori proof of correct connectivity between the adja-
cent tetrahedral stencils. Such a proof is important as
a precedent is known with the original MC algorithm,
wherein symmetry was incorrectly used to reduce the
number of stencils, thus causing topological holes in
the approximated surface [10]. The present work of-
fers a formal statement of the connectivity properties
of the IS stencils along with the proofs that these prop-
erties hold.

Figure 2] shows two example meshes obtained with the
certified implementation discussed here. The imple-
mentation uses the same stencils in the uniformly re-
fined area next to the domain boundary as the original
IS algorithm. However, unlike the IS algorithm, it does
not implement the octree optimization with additional
stencils that allow for fewer tetrahedra in the interior
of the domain by omitting the creation of certain oc-
tree leaves. These additional octree stencils are left
for future work.

The number of IS connectivity cases to be verified,
when unfolded, grows rapidly. Every two adjacent
structured tetrahedra that share a triangular face in-



Figure 2: Top: the surface and a cross-section of a mesh
of a torus defined by an analytical function (61,528 tetra-
hedra, 20.2° minimum output dihedral angle). Bottom:
a cross-section of a mesh of a human brain atlas de-
fined by an image (9,788,808 tetrahedra, 30° minimum
output dihedral angle).

volve 5 vertices (see Figure [3]) and, since each vertex
can evaluate the cut function to one of 3 values, the
number of 5-vertex sign assignments is 3° = 243. If a
higher confidence in the stencils is aimed at, as is the
case in the proofs that follow, each of the four faces of
a structured tetrahedron needs to be examined sepa-
rately, which leads to a multiplier of 4: 243 -4 = 972.
Also, if formulas for each case of a translation and a ro-
tation of a structured tetrahedron differ, these formu-
las need to be looked at separately as well. In this de-
velopment, 12 variations of a formula are used, which
raises the number of cases to 97212 = 11,664. More-
over, each case involves several (0 to 3 on each side of
the shared face) unstructured tetrahedra that subdi-
vide either of the adjacent structured tetrahedra, and
every edge of each of these unstructured tetrahedra
needs to be examined with respect to the subdivision
of the shared face from the other side. A manual enu-
meration and examination of all such cases becomes
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highly time-consuming and error-prone. Another im-
portant consideration is the ability to modify and ex-
tend this algorithm without the need for a repeated
manual analysis. Once an automatic (i.e., not depend-
ing on the stencils) verification procedure is developed,
it can be trivially applied to another set of stencils.

As an example, Figureshows two structured tetrahe-
dra, (f1, f2, /3, p) and (f1, f2, /3, q), that share face
(f1, f2, 18). The symbols in vertex positions show the
signs of the cut function: “4” symbolizing the vertex
being inside the domain, “—” being outside, and “0”
lying on the boundary. The signs of vertices f1, f2,
3, p, and ¢ are computed by direct evaluation of the
cut function. The positions of vertices u, v, and w are
computed by iterative bisection of the edges (¢, f1),
(f3, f1), and (f2, f1), respectively, in order to find (to
within a tolerance) the zero values of the cut function,
i.e., the intersections of these edges with the domain
boundary. Applying the corresponding stencils [12] to
subdivide the structured tetrahedron (f1, f2, f3, p),
one obtains three unstructured tetrahedra: (f1, p, w,
v), (f8, p, w, v), and (w, f3, 2, p). Similarly, for the
structured tetrahedron (f1, f2, f3, q), one obtains four
unstructured tetrahedra: (f1, u, v, w), (f3, u, v, w),
(w, f2, u, 18), and (q, f2, u, f8). Tetrahedra (f1, p,
w, v) and (fI, u, v, w) are classified as located outside
the domain, and are not considered in this work. The
remaining unstructured tetrahedra, three on one side
of the shared face and two on the other side, are clas-
sified as lying within the domain and are considered
further.

Figure 3: An example of two face-adjacent structured
tetrahedra, (f1, 2, f3, p) and (f1, 2, f3, g) shown
with black lines, a sign assignment to their vertices, and
a subdivision into unstructured tetrahedra shown with
purple lines. The shared face (I, 12, f3) is shaded.

Via an examination of all edges of the unstructured
tetrahedra classified as lying inside the domain, it can
be concluded that the two sets of edges created inside
the two respective structured tetrahedra are consistent



within the shared face. In the rest of this work, formal
conditions for such a verification are developed and
proven.

Section [2] introduces the methodology used in this
work. Section [3] describes the executable functions
whose properties are certified. Section @ presents
the formally stated properties of the function that
constructs structured tetrahedra and the proof of
these properties. Section [5| certifies the function that
constructs unstructured tetrahedra, considered sepa-
rately, in a similar progression. In Section@the prop-
erties of both functions are proven together, which
is necessary since unstructured tetrahedra are con-
structed out of the structured ones. Section [ con-
cludes the exposition with the summary of the pre-
sented work and expected extensions.

2. METHODOLOGY

The Curry-Howard correspondence is a funda-
mental concept in proof theory that considers proving
to be a kind of programming. Indeed, while a com-
puter program is a sequence of transformations of in-
put data to output data, a proof is a sequence of trans-
formations that takes the input proposition (premise)
and converts it to the output proposition (conclusion).
In this sense, implementing an algorithm as a function
is similar to proving a theorem.

Computer-assisted proving involves a human user
who guides the process through formulating interme-
diate steps and choosing proof techniques. The user
interacts with a software program that manages the
state of the proof, verifies the validity of the typed
commands, and executes those commands.

Proof automation allows for finding proofs in spe-
cial cases by invoking predefined proof search strate-
gies. Once the user identifies that at a certain stage in
the proving process a particular proof goal is suitable
for some predefined automatic procedure, that proce-
dure can be invoked in order to reduce the number of
manually guided steps.

Purely functional programming is a programming
methodology that views the subroutines to be sim-
ilar to mathematical functions, whose return value
depends only on the values of the parameters, and
that produce no side effects. This methodology, when
enforced in a ‘pure’ language, often translates to re-
stricting the programming constructs so that there is
no memory aliasing via pointers, parameters to func-
tions are passed and returned ‘by value’, and mutable
global values are not allowed. Eliminating side effects
and aliasing makes it much easier to argue about the
return value of a function, and therefore a pure func-
tional programming language is a suitable choice for a
proof assistant. Functional programming is contrasted
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to imperative programming that changes state with
commands, such as, for example, an assignment.

Extraction is a methodology that separates the exe-
cutable part of a program’s specification from its logi-
cal part and saves it in a language that supports com-
pilation and deployment.

The Coq formal proof management system [8] was cho-
sen for this development. Coq combines a purely func-
tional programming language called Gallina, which is
based on a formal language Calculus of Inductive Con-
structions, and a vernacular language of commands
that allow for stating software specifications and prov-
ing mathematical theorems. Some of the Coq’s salient
features that are relevant to the current exposition are
briefly reviewed below. A thorough treatment can be
found in relevant texts |7}/16}/17].

Coq’s Calculus of Inductive Constructions is
a general theory that defines a typed programming
language that can serve as constructive foundation of
mathematics. Inductive definitions are in the core of
Coq’s language. For example, a basic number type
used in this development, binary integer numbers (Z),
are defined inductively in Coq’s standard library as
follows.

Inductive positive : Set :=
| 2 : positive — positive
| 2O : positive — positive
| zH : positive.

Inductive Z : Set :=
| Z0 : Z
| Zpos : positive — Z
| Zneg : positive — Z.

Type Z can be thought of as a wrapper around the
positive type, with its constructors corresponding to
number 0, some positive number, or some negated pos-
itive number, respectively. The positive number type
is defined via constructor zH , representing binary digit
1 in the most significant position, and two construc-
tors, O and z/, that add a least significant digit, 0
or 1 respectively, to a given positive number. For ex-
ample, Zneg (zO (xI ©H)) represents —6. The arrow
operator — is a special case of a universal quantifier
and is used in a variety of contexts, including listing
function and constructor arguments, as well as logical
implication.

Polymorphism is a concept in programming that
stands for providing a single interface to elements of
different types. Polymorphism is fully supported in
Coq by declaring undefined types as variables. In the
current development, for example, the concrete rep-
resentation of the Vertexr data structure is irrelevant
to the proof of unstructured stencil correctness. As a
result, in the Coq script it was abstracted as an un-
specified type:



Variable Verter : Type.

The unstructured tetrahedron data structure is then
defined as four Verter data elements appearing as pa-
rameters to the tetrahedron constructor UT':

Inductive UnstructuredTet :=
UT : Vertex — Verter —
Vertex — Vertex — UnstructuredTet.

Closure of a function is a function that carries bind-
ings to all the data structures referenced within it .
Along with polymorphism, functional closure allows
for abstracting implementation details that are not
needed for the proof part. One example of closure used
in this development is the cut function named GetSign,
which is bound to the definition of the domain to be
meshed in the executable part of the implementation.
However, the proof part only needs to know that this
function takes a parameter of type Verter and returns
its Sign:

Variable GetSign : Vertex — Sign.

Tactics are predefined commands that are executed in
the current proof environment to transform and even-
tually discharge the proof goal. Coq offers a collec-
tion of tactics that can accomplish a variety of log-
ical transformations, such as applying a previously
proven theorem (apply), proof by case enumeration
(destruct), substitution of previously defined expres-
sions (unfold), and many more. Some tactics exhibit
a high degree of automation to ease the development
effort on the part of the user. For example, one of
the tactics used hereby, eauto, combines a Prolog-like
resolution procedure auto with deferred instantiation
of existential variables.

Tactical language in Coq is called Ltac. It contains
a number of high-level commands that allow for ap-
plying tactics in various arrangements, including se-
quences, loops, and branches. The current develop-
ment makes use of some of the features of this lan-
guage, such as repeated application of tactics, catch-
ing exceptions, defining automated reusable proof pro-
cedures, and matching the shape of the current goal
against a given pattern.

3. CERTIFIED EXECUTABLE
FUNCTIONS

3.1 Function for Constructing Structured
Tetrahedra

The IS algorithm uses structured tetrahedra to fill in
the region of space to be meshed in the proximity of
the domain boundary. The data structure for struc-
tured tetrahedra contains not only their vertex infor-
mation, but also a sufficient amount of data to query
all four of its neighbors adjacent via the faces, along
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with the vertices of the neighbors that correspond to
the vertices of the given tetrahedron.

Inductive StructuredTet :=
ST : Coord3 — Coord3 — Coord3 — Coord3 —
StructuredTetld x VertexOrder —
StructuredTetld x VertexOrder —
StructuredTetld x VertexOrder —
StructuredTetld x VertexOrder —
StructuredTet.

Here the Coord3 parameters to the constructor ST
are the three-dimensional coordinates of its vertices.
The Coord3 data type simply combines three Z values
corresponding to each of the Euclidean dimensions.

Inductive Coord3 :=
C8:7Z — 7Z — Z — Coord3.

As mentioned above, the data structure for unstruc-
tured tetrahedra uses a variable, i.e., unspecified, type
Vertex. When it is necessary to make the vertex types
used in the proofs match, the Coord3 type is passed
as a parameter that instantiates the Vertezr type.

The type StructuredTetld is defined as follows.

Inductive StructuredTetld :=
STId : Coord3 — StructuredTetCase
— StructuredTetld.

The Coord3 parameter to the constructor STId is the
three-dimensional coordinate of the reference, or an-
chor, that defines the position of the tetrahedron.

The type StructuredTetCase defines one of 12 possible
orientations that are enumerated as constructors of
this type:

Inductive StructuredTetCase :=
Tet_I1 | Tet_I2 | Tet_13 | Tet_1} |
Tet_J1 | Tet_J2 | Tet_J3 | Tet_Jj |
Tet_K1 | Tet_K2 | Tet_K3 | Tet_K/.

The VertexOrder parameters to the ST constructor
specify the ordering of the vertices of each neighbor
tetrahedron, so that the corresponding vertices can be
known (see Section @ It is a function that returns a
permutation of four vertices:

Definition VertexOrder : Type :=
Coord3 — Coord3 — Coord3 — Coord3 —
(Coord3 x Coord3 x Coord3 x Coord3).

Figure |4] illustrates some of these data elements. The
cube drawn with black lines has even-coordinate cor-
ners, and the one drawn with blue lines has odd-
coordinate corners. The corner marked ijk is the
reference. The other corner labels indicate the off-
set from the reference coordinate. The red lines
show the edges that are added to form four tetra-
hedra shown: (220,222,311,331), (220,222,311,111),



(220,222,131,331), (220,222,131,111). These tetra-
hedra correspond to cases Tet_K1, Tet_K2, Tet_K3,
and Tet_ K/, respectively. Another set of four tetrahe-
dra (not shown) is constructed around edge (202, 222).
The third set of four tetrahedra (also not shown) is
constructed around edge (022,222). Twelve tetrahe-
dra correspond to each reference coordinate ijk. The
executable function GetStructuredTet returns one of
these tetrahedra, depending on the case requested.
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Figure 4: The vertices used by the function that con-
structs structured tetrahedra.

The structured tetrahedra can be defined by a simple
formula that returns their connectivity with respect to
the vertices of the BCC grid. This formula will trans-
late and rotate a reference tetrahedron to define all
other similar tetrahedra. Such a formula was encoded
into an executable function named GetStructuredTet.

Definition GetStructuredTet (tid : StructuredTetld)
StructuredTet =
[omitted]

3.2 Function for Constructing Unstruc-
tured Tetrahedra

The executable function GetUnstructuredTets returns
a list of tetrahedra that subdivide a given structured
tetrahedron. The parameters to this function v1, v2,
v8, v/ are vertices of the given structured tetrahedron.
This function enumerates all of the 81 possible combi-
nations of values GetSign v1, GetSign v2, GetSign v3,
and GetSign v4, and returns a corresponding prede-
fined list of unstructured tetrahedral stencils adopted
from the original publication .

Definition GetUnstructuredTets
(vl v2 v8 v4 : Vertex)

: list UnstructuredTet :==  [omitted|
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4. CERTIFICATE FOR STRUCTURED
TETRAHEDRA

4.1 Specification

The specification for the correctness of the structured
tetrahedron returned by function GetStructuredTet
states the following requirement. Let v1, v2, v3, v4
be the vertices of this tetrahedron, and nei-tid and
nei_order be the identificator and the order of vertices
of its ¢-th neighbor (i = 1,2, 3,4). A convention is used
that the i-th neighbor is the one that is across from
the i-th vertex. Then, if the same function GetStruc-
turedTet is called for nei_tid, and the returned vertices
ul, u2, ul, u4 are permuted by function nei_order,
then the vertices with the corresponding positions are
equal, except for the vertices in position i that are not
equal. The Section mechanism of Coq allows for mov-
ing the frequently used parameters of the constructs
defined within this section to its Variables clause,
thus improving readability.

Section GetStructuredTet_Spec.

Variables (vl v2 v8 vj : Coord3)
(nei_tid : StructuredTetld)
(nei—order : VertexOrder).

Definition U :=
match GetStructuredTet nei_tid with
ST ul u2 u8 u4 - - - - =
nei_order ul u2 u8 u4
end.

Definition FacelCorrect :=
match U with (ul, u2, u3, uj) =
(vl =ul) A (v2 = u2) A
(v8 = ul3) A (v = u4)
end.

Definition Face2Correct :=
match U with (ul, u2, u3, uj) =
(vl =ul) A "(v2 = u2) A
(v8 = ul3) A (v} = u4)

end.
[omitted]
End GetStructuredTet_ Spec.

4.2 Proof

The following theorem proves the specification above.

Theorem FacesCorrect :
V tid : StructuredTetld,
match GetStructuredTet tid with
ST v1 v2 v3 v4 (tidl, ol) (tid2, 02)
(tids, 08) (tidj, o) =
(FacelCorrect vl v2 v8 vj tidl ol) A
(Face2Correct vl v2 v8 v4 tid2 02) A
(Face3Correct v1 v2 v3 v4 tid3 03) A



(Face4 Correct vl v2 v3 v4 tid4 o4)
end.
Proof.

[omitted] Qed.

5. CERTIFICATE FOR
UNSTRUCTURED TETRAHEDRA

5.1 Specification

Given two edges, each belonging to the stencils on ei-
ther side of the shared face, these edges are considered
compatible if they do not intersect in their interiors.
A set of conditions is developed below that allow for
verifying this requirement.

5.1.1 Barycentric Coordinate System

Let vi,...,v, be the vertices of a simplex in Eu-
clidean space R®, given as triples of coordinates. For
the present exposition, the relevant values of n are
3 and 4, corresponding to a triangle or a tetrahe-
dron, respectively. For some point u € R?, the real
numbers ai,...,an, not all equal to zero, such that
(a1 + -+ 4+ an)u = aivi + - - + anvn, are called
barycentric coordinates of u with respect to the sim-
plex with vertices v1,...,v,. Barycentric coordinates
with a1+ - -+a, = 1 will be used below. For the proofs
presented, only three values of a barycentric coordi-
nate are relevant: zero, some unknown value strictly
between zero and one, and one. These are defined
symbolically by the following respective constructors
of type BCoord:

Inductive BCoord := Zero | Interior | One.

5.1.2 Barycentric Coordinates Within a
Triangle

Consider the barycentric coordinate system defined by
the shared face (f1, f2, f3). Then the following propo-
sition F'Coord lists the barycentric coordinates of ver-
tices f1, f2, f3, as well as of the vertices computed on
the edges of this face by function Getlntersection:

Variables f1 f2 f3 p q : Vertex.

Inductive FCoord : Verter — BCoord —
BCoord — BCoord — Prop :=

| FC_1 : FCoord f1 One Zero Zero

| FC_2 : FCoord f2 Zero One Zero

| FC_8 : FCoord f3 Zero Zero One

| FC_4 : FCoord (GetIntersection f1 f2)
Interior Interior Zero

| FC_5 : FCoord (GetIntersection f2 f1)
Interior Interior Zero

| FC_6 : FCoord (Getlntersection f1 f3)
Interior Zero Interior

| FC_7 : FCoord (GetIntersection f3 fI)
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Interior Zero Interior
| FC_8 : FCoord (GetIntersection f2 f3)
Zero Interior Interior
| FC-9 : FCoord (GetIntersection f3 f2)
Zero Interior Interior.

5.1.3 Barycentric Coordinates Within a
Tetrahedron

For the tetrahedron (f1, f2, f3, p), the barycentric co-
ordinate system is defined similarly. For the proof that
follows, however, the full coordinates of the vertices
are not needed. The only needed piece of information
is which vertices lie off the shared face (fI, f2, f3),
as evidenced by their non-zero last barycentric coor-
dinate (i.e., the one corresponding to vertex p). The
proposition below makes this information available.

Inductive PCoord : Vertex — Prop :=

| PC_1 : PCoord p

| PC_2 : PCoord (GetIntersection p fI)
| PC_3 : PCoord (GetIntersection f1 p)
| PC_4 : PCoord (GetIntersection p f2)
| PC_5 : PCoord (GetIntersection f2 p)
| PC_6 : PCoord (GetIntersection p f3)
| PC_7 : PCoord (Getlntersection f3 p).

The predicate QCoord is defined similarly to PCoord,
only with respect to vertex ¢ of tetrahedron (fI, f2,

13, q).

5.1.4 Barycentric Non-Intersection in
the Shared Face

Given a point p and a segment (¢!, ¢2), both lying
in face (f1, f2, f38), a proposition can be stated that
guarantees p not being in the interior of (¢1, ¢2). Let
the barycentric coordinates of points ¢, ¢2, p with re-
spect to vertex f1 be a, b, ¢, respectively, see Figure[f]
Then, if ¢ is above or below a and b, as specified pre-
cisely by the propositions that follow, this requirement
can be formalized.

Proposition Below enumerates the cases (i.e., combi-
nations of values of its parameters) that assure the
required property of segment-point non-intersection,
where the first parameter is the coordinate of the
point, while the second and the third parameters are
the coordinates of the segment’s vertices. Care is taken
not to make conclusions based on comparing two In-
terior coordinates, since their specific values are un-
known before they are computed.

Inductive Below : BCoord — BCoord —
BCoord — Prop :=
| B_1 : Below Zero Zero Interior
| B_2 : Below Zero Zero One
| B_8 : Below Zero Interior Interior
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Figure 5: Point p with barycentric fI-coordinate ¢ not
lying in the interior of segment (g1, g2) whose vertices
have barycentric fI-coordinates a and b.

| B-4 : Below Zero Interior One.
Proposition Above is stated similarly.

BCoord — BCoord —
BCoord — Prop :=
_1 : Above One Zero Interior

_2 : Above One Zero One

_8 : Above One Interior Interior
A_4 : Above One Interior One.

Inductive Abowve :

In order to allow the vertices of the segment to appear
in an arbitrary order, symmetric versions of proposi-
tions Below and Above are defined. They simply refer
to these propositions with both orderings of parame-
ters.

Section Below-Above_Symm.
Variables ¢ a b : BCoord.
Inductive BelowSymm : Prop :=
| BS-1 : Below ¢ a b — BelowSymm
| BS_2 : Below ¢ b a — BelowSymm.
Inductive AboveSymm : Prop :=
| AS_1 : Above ¢ a b — AboveSymm
| AS_2 : Above ¢ b a — AboveSymm.

End Below-Above_Symm.

The proposition SPNI1D below states that BCoord
value ¢ is either above or below values a and b (re-
gardless of the ordering of a and b), which guarantees
that a point with coordinate ¢ does not lie in the inte-
rior of the segment whose vertices have corresponding
coordinates a and b.

Section Segment_Point_Not_Intersecting_1D.
Variables ¢ a b : BCoord.
Inductive SPNIID : Prop :=
| SPNI1ID_1 : BelowSymm ¢ a b — SPNI1D
| SPNIID_2 : AboveSymm ¢ a b — SPNIID.
End Segment_ Point_Not_Intersecting_1D.

If the non-intersection condition SPNI1D holds with
respect to at least one barycentric coordinate, then the
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vertex with barycentric coordinates (c1, ¢2, ¢3) does
not intersect the interior of the segment whose vertices
have coordinates (al, a2, a8) and (b1, b2, b3):

Section Segment_Point-Not_Intersecting_3D.
Variables al a2 a3 b1 b2 b3 c1 c¢2 ¢3 : BCoord.
Inductive SPNI3D : Prop :=
| SPNISD_1 : SPNIID c1 al b1 — SPNI3D
| SPNISD_2 : SPNI1D c2 a2 b2 — SPNI3D
| SPNI3D_8 : SPNI1ID ¢3 a3 b3 — SPNI3D.

End Segment_ Point_Not_Intersecting-3D.

A similar approach is used in the case of two segments
lying in face (f1, f2, f3), see Figure [6]

1

Figure 6: Segment (pI, p2) whose vertices have
barycentric fI-coordinates ¢ and d and segment (g1, g2)
whose vertices have barycentric fI-coordinates a and b
not intersecting in their interiors.

First, a proposition is stated that establishes a
one-dimensional barycentric condition of their non-
intersection in the interiors. Given that the coordi-
nates of the first segment’s vertices are a and b, and
the coordinates of the second segment’s vertices are
¢ and d, the condition requires that either both ver-
tices of the first segment are below the vertices of the
second segment or vice versa:

Section Segment-Segment-Not_Intersecting-1D.
Variables a b ¢ d : BCoord.
Inductive SSNIID : Prop :=
| SSNI1D_1 : BelowSymm a ¢ d —
BelowSymm b ¢ d — SSNI1D
| SSNI1D_2 : BelowSymm ¢ a b —
BelowSymm d a b — SSNI1D.
End Segment_Segment_Not_Intersecting_1D.

Then a proposition is stated requiring that the one-
dimensional condition holds with respect to at least
one of three barycentric dimensions.

Section Segment_Segment_Not_Intersecting-3D.
Variables al a2 a8 bl b2 b3
cl ¢2 ¢3 dl d2 d3 : BCoord.
Inductive SSNI3SD : Prop :=
| SSNISD_1 : SSNIID al b1 ¢l dI — SSNISD



| SSNISD_-2 : SSNIID a2 b2 c2 d2 — SSNISD
| SSNISD_8 : SSNIID a8 b3 ¢8 d3 — SSNISD.
End Segment_Segment_Not_Intersecting_3D.

5.1.5 Barycentric Non-Intersection
Within Adjacent Tetrahedra

In this section, a condition is established that formally
defines a sufficient condition for two edges, each inci-
dent on the irregular tetrahedra on either side of the
shared face, to be compatible, i.e., not intersecting in
their interiors. This condition is given by the propo-
sition TwoFEdgesCompatible stated below. Two edges,
(p1, p2) and (q1, q2), are considered compatible if at
least one of the following conditions is satisfied:

e Vertex pl is in a special position (proposition
SpecialVertexr described further below) with re-
spect to edge (¢, ¢2) and vertex p2 is not in
the interior of edge (¢!, ¢2) (proposition NotIn
described further below).

e The condition above holds if vertices p! and p2
are interchanged.

e The two conditions above hold if edges (p1, p2)
and (qI, ¢2) are interchanged.

e If both edges (pI, p2) and (qI, ¢2) lie in the
shared face (fI, f2, f3), then they do not inter-
sect in their interiors as defined by proposition
SSNI3D above.

Section Two-FEdges_ Compatible.

Variables pl p2 q1 q2 : Verter.

Inductive TwoEdgesCompatible : Prop :=

| EC_1 : SpecialVertex pl1 q1 q2 PCoord —
NotIn p2 q1 q2 PCoord QCoord —
TwoEdgesCompatible
SpecialVertex p2 q1 q2 PCoord —
NotIn p1 q1 q2 PCoord QCoord —
TwoEdgesCompatible
SpecialVertexr q1 p1 p2 QCoord —
NotIn q2 p1 p2 QCoord PCoord —
TwoFEdgesCompatible
Special Vertexr q2 p1 p2 QCoord —
NotIn q1 p1 p2 QCoord PCoord —
TwoFEdgesCompatible
YV al a2 a3 bl b2 b3

cl c2 c¢83 dl d2 d3 : BCoord,
FCoord p1 al a2 a3 —
FCoord p2 bl b2 b3 —
FCoord q1 c1 c2 ¢3 —
FCoord q2 d1 d2 d3 —
SSNI3D al a2 a3 b1 b2 b3

cl c2 c3 dl d2 d3 —

TwoFEdgesCompatible.

| EC_2 :

| EC_3 :

| EC_4 :

| EC_5 :
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End Two-FEdges— Compatible.

The special status of vertex v with respect to edge (u?,
u2) here means that v is equal to one of the vertices u1
or u2, or it is off the shared face as defined by the cor-
responding parameter proposition V (equal to PCoord
or QCoord depending on the branch of TwoEdgesCom-
patible).

Section Special- Vertex.
Variables (v ul u2 : Vertex)
(V : Vertex — Prop).
Inductive SpecialVertex : Prop :=

| SV_1: v =ul — SpecialVertex
| SV_2 : v = u2 — Special Vertex
| SV_8 : V v — SpecialVertez.

End Special- Vertex.

Vertex v being NotIn edge (ul, u2) holds if at least
one of the following conditions is satisfied:

e v is a special vertex with respect to ul, u2 as
defined above.

o At least one of ul, u2 is off the shared face as
defined by the appropriate proposition PCoord
or QCoord.

e All three vertices v, ul, u2 lie in the shared face
and v is not in the interior of edge ul, u2 as
defined by proposition SPNI3D.

Section Not-In.
Variables (v ul u2 : Vertex)
(V U : Vertex — Prop).
Inductive NotIn : Prop :=
| NI_1 : SpecialVertex v ul u2 V — Notln
| NI_2 : U ul — Notln
| NI_8 : U u2 — Notln
| NI_j4 : YV al a2 a8 b1 b2 b3 ¢l c¢2 ¢3 : BCoord,
FCoord ul al a2 a3 —
FCoord u2 b1 b2 b3 —
FCoord v ¢l ¢c2 ¢c3 —
SPNI3D al a2 a3 bl b2 b3 cl c2 c3 —
NotIn.
End Not_In.

Proposition AllEdgesCompatible below makes use of
TwoEdgesCompatible by passing to it every pair of
edges, each pair consisting of edges from both sides
of the shared face.

Definition AllEdgesCompatible

(ul u2 u8 uf vl v2 v3 v4 : Vertex)
: Prop :=

let T := GetUnstructuredTets Vertex

GetSign Getlntersection in

Y (t1 t2 : UnstructuredTet Vertex),

List.In t1 (T ul u2 u3 uj) —

List.In t2 (T vl v2 v3 v{) —



Forall EdgePairCompatible
(list_prod (Edges t1) (Edges t2)).

Given two regular tetrahedra, one defined by vertices
ul, u2, ud, u4, and the other by v1, v2, v3, v4, func-
tion GetUnstructuredTets is called for each of these
tetrahedra. This function returns a list of irregular
tetrahedra for each regular tetrahedron. Let ¢t/ be an
arbitrary tetrahedron in the list returned for uf, u2,
ul, u4. Let t2 be an arbitrary tetrahedron in the list
returned for v1, v2, v3, v4. Six edges of t1 and six
edges of t2 are collected into two respective lists using
function Fdges below:

Definition Fdges (t : UnstructuredTet Vertex)
: list Edge :=
match ¢ with UT _uw v wr =
[(w, v); (u, w); (u, r); (v, w); (v, 7); (w, 7)]

end.

The standard library function [list_prod returns a
cartesian product of two lists, which are Edges t1
and Fdges t2 in this development. Finally, the stan-
dard library proposition Forall asserts that a propo-
sition supplied as its first parameter (FEdgePairCom-
patible) holds for all elements of the list supplied as
its second parameter. FdgePairCompatible simply un-
packs the vertices of both edges and passes them to
TwoEdgesCompatible:

Definition FdgePairCompatible ee :=
let "((p1, p2), (¢1, ¢2)) := ee in
TwoFEdgesCompatible p1 p2 q1 ¢2.

5.2 Proof

The following lemma proves that the proposition
AllEdgesCompatible holds for six arrangements of five
vertices f1, f2, f3 p, q that define two tetrahedra with
shared face (f1, f2, f3).

Lemma CompatibilityOrders :
V Vertex GetSign Getlntersection f1 f2 f3 p q,
let P := AllEdgesCompatible Vertex GetSign

GetlIntersection f1 2 f3 p q in

Popfl f213qf1f2f3A
Popflf2ff1qf3f2A
Pflpf2f3qflf3f2n
Pflpf2f3f1qf2f3n
Pfrf2pf3f1f2qf3n
P f1f2f3pfl f2f3q.

Proof. [omitted] Qed.

6. CERTIFICATE FOR STRUCTURED
AND UNSTRUCTURED
TETRAHEDRA

In this section, the correctness of the two functions,
one returning structured and the other returning un-
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structured tetrahedra, is proven when they are used
together. Function GetStructuredTet returns a struc-
tured tetrahedron which is then passed to GetUnstruc-
tured Tets.

Theorem Facel Compatible :
YV GetSign Getlntersection tid,
match GetStructuredTet tid with
ST v1 v2 v3 v4 (tidl, orderl) - _ _ =
match GetStructuredTet tidl with
ST ul u2 ul wf - - - - =
let (w1, w2, w8, w}) :=
orderl ul u2 u8 u4 in
AllEdgesCompatible Coord3 GetSign
GetIntersection w2 w3 w4 vl wl
vl v2 v8 v4 ul u2 ul u4
end
end.
Proof.

[omitted] Qed.

The statement of this theorem is somewhat similar to
that of theorem FacesCorrect. Both theorems exam-
ine the result of two calls to function GetStructuredTet
with respect to the face shared by the two returned
structured tetrahedra. Theorem FacesCorrect proves
that the shared face is identified correctly. Theorem
FacelCompatible, on the other hand, proves that two
sets of unstructured tetrahedra, each computed via
function GetUnstructuredTets within the definition of
proposition AllEdgesCompatible, satisfy this proposi-
tion. The proof of theorem FacelCompatible makes
use of lemma CompatibilityOrders that requires one of
six specific orderings of vertices of the two structured
tetrahedra. The orderings of vertices returned by the
calls to GetStructuredTet satisfy this requirement. An-
other three theorems are proven, Face2Compatible,
Face3Compatible and FacejCompatible, that are iden-
tical to FacelCompatible except for the faces that are
examined.

7. DISCUSSION AND CONCLUSIONS

Currently, major software projects consist of millions
of lines of code, multiple subsystems, and are man-
aged by large teams of developers (who tend to move
between positions). With this level of complexity, for-
mulating and maintaining the specifications of such
systems, and ensuring that the implementation meets
these specifications become a major challenge. The
traditional approach to software specifications consists
in writing textual descriptions in English (or other nat-
ural language) with a mix of mathematical statements,
and maintaining them as code comments and/or as
separate documents. There are two problem with such
specifications. The first is that they tend to be high-
level and not necessarily reflective of the rich set of
behaviors the code can exhibit. The second problem is
that they are disconnected from the code, in the sense



that updates to the code and to these specifications
may be performed separately and not necessarily con-
sistently with each other. The certified software devel-
opment process illustrated in this paper solves both of
these problems by virtue of the specifications referring
to the actual implementation. It solves the first prob-
lem by using specifications stated in a precise logical
language, and having these statements automatically
checked for exhaustive coverage of all possible cases.
It solves the second problem by having the specifi-
cation directly reference the implementation. Appel
et al. [9] coined the term deep specification to refer to
specifications that are simultaneously rich (sufficiently
detailed), two-sided (both implementable and useful),
formal (stated in a formal language which supports
automated tools), and live (connected to implementa-
tion). A number of model checking and design specifi-
cation approaches based on formal languages like Al-
loy [5], AADL (19|, VDM |20], and Z |21], operate on
a high level of abstraction that is not connected with
the implementation. An approach of annotating the
routines with pre- and post-conditions, such as De-
sign by Contract [22], relies on the developer’s current
understanding of these conditions and is also not live.

In addition to providing live specifications of software,
the presented certification approach also guarantees
that the proven properties hold for all input parame-
ters that can be passed to the routines. In other words,
it by design eliminates the need to test the resulting
software for these properties. The caveat, however,
is that the formally stated specifications have to cor-
rectly represent the expected properties.

Mesh generation is one of the application domains that
is likely to benefit from the use of formal methods in
general and of certified software development in partic-
ular. One reason behind this expectation is high com-
plexity of mesh generation algorithms that need to bal-
ance multiple, often contradictory, requirements of el-
ement shape, boundary fidelity, mesh grading, number
of elements, software running time and memory use,
and others. These requirements can be thought of as
a multidimensional design space, where each require-
ment represents one dimension of this space. Being
able to a priori formally guarantee, or certify, certain
properties of an algorithm’s implementation allows for
the reduction of the dimensionality of the remaining
design space. An example of this phenomenon from
the current work is the unfolding of the tetrahedral
stencils: because the unfolded stencils have been au-
tomatically checked for consistency during a single cer-
tification event, the Parity Rule [12] does not need to
be enforced at runtime during every execution of the
software. Another reason behind the expectation of
the usefulness of formal methods in mesh generation
is the combinatorial nature of mesh stencils, or ele-
ments, which is suitable for automated enumeration
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and analysis of their possible arrangements.

The efficiency of the proof execution does not influence
the performance of the final software product. Indeed,
the proof is run at design time and then separated
from the executable part by the process of extraction.
This executable part, on the other hand, is the compo-
nent which gets deployed and whose performance con-
tributes to the efficiency of the resulting product. The
main requirement on the proof efficiency is that it does
not unreasonably slow down the design effort. The ex-
perience of the author of this work suggests that the
proof design effort is dominated by the time spent on
elucidating the properties that need to be proven, for-
malizing them, and discovering the appropriate proof
strategies. The proof execution part appeared minor
relative to these time investments. It was also no-
ticed that the same result can be proven with different
strategies that sometimes vary significantly in perfor-
mance. The accompanying certificate |[14] was run on
a MacBook Pro equipped with an 8-core Intel Core
i9 @ 2.4 GHz processor and 32 GB of RAM mem-
ory. In the serial mode the proof completed in 46 min-
utes. Virtually all of this time was taken by the proof
of lemma CompatibilityOrders. Experimentation with
Coq’s parallel proof modes revealed that this time can
be reduced to 31 minutes with two proof threads. In-
creasing the number of proof threads to six, which is
the number of independent proof goals in this lemma,
did not yield further speedup.

The present work lays out a methodological founda-
tion and a case study for developing certified mesh
generation software. It demonstrates the use of the
Calculus of Inductive Constructions for defining exe-
cutable functions, stating their properties, and proving
these properties via a direct examination of these func-
tions (the property of liveness). These functions were
extracted into OCaml code, supplemented with other
OCaml functions needed for a working computer pro-
gram, compiled, and executed. The evaluation of the
performance of this program, as well as of the choices
of the data structures, is out of the scope of this ex-
position and will be presented elsewhere.

It is anticipated that this work will be extended in
the following directions. The first direction is the live
proofs of the angle bounds reported in the original
IS presentation [12]. The second direction is the ad-
dition of other shapes of structured tetrahedra that
allow for more flexibility in filling in the octree leaves,
leading to fewer resulting tetrahedra, as also originally
reported [12]. The third direction is the study of sten-
cils for multi-material interfaces, which can potentially
be informed by previous work [23].
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