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ABSTRACT 

Generating fit-for-purpose CAD models from complex assemblies is time consuming for analysts. Tedious tasks include to identify 
and isolate the components of interest for the analysis, remove duplicate components, or correct inconsistent components’ interfaces 
are common for large assemblies during the product development process. In this paper a new approach to help engineers analyse 
the consistency of CAD assembly models is proposed. The method utilises a tensor factorisation technique developed for relational 
machine learning and applies it on B-Rep topological and geometrical relations. The generated decomposition is used to identify 
which entities in the assembly are similar (within a threshold) to a selected input entity. The factorisation model regards globally 
all input relationships, e.g. the connections between components, to identify similar entities based on their relationships in the 
relational domain. It is shown that a hierarchical clustering method can group entities based on the similarities of their attributes 
and relationships.  
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1. INTRODUCTION

The pre-processing of digital mock-ups for multi-physics 
simulation requires identification of components anticipated 
not to have an influence on the desired results and removing 
them from the simulation model. Before starting the 
geometric adaption and simplification of the CAD objects, 
for large assembly the user should initially extract and 
determine the components of interest for the analysis. Often, 
CAD assemblies extracted from Product Lifecycle 
Management systems contain data inconsistencies such as 
missing components, duplicated entities, misalignments of 
parts, or poor-quality B-Rep geometry and topology. 
Consequently, designers and analysts spend considerable 
time correcting the CAD input assembly in order to obtain a 
model that is fit-for-purpose for finite element analysis and 
ready to be meshed. In addition, identifying similar 
geometric configurations in assembly is highly beneficial to 
avoid repeating pre-processing tasks. 

With the rapid growth of relational and network data in 
social media modeling, bioinformatics and the semantic 
web, relational machine learning methods [1] have been 
proposed to learn from information represented in the form 
of relations between entities. The objective of relational 
learning is to build a model of the relational domain, where 
the data can be incomplete, noisy or contain false 

information [2]. The data is in the form of a graph, where 
nodes represent entities and edges the relations between the 
entities. Typical applications are the prediction of links in 
social networks or the identification of duplicated or missing 
entities in incomplete knowledge bases. In particular, tensor 
factorization techniques [1,3] have shown capabilities to 
process large multi-relational knowledge bases from the 
semantic web Linked Open Data [4,5], consisting of millions 
of entities, hundreds of relations and billions of known facts 
on a standalone computer. 

The CAD assemblies produced by most industrial CAD 
systems (e.g. CATIA or Siemens NX) are comprised of B-
Rep component models which provide direct topological and 
geometrical information. These can be represented in the 
form of a graph. A B-Rep topological graph, as shown in 
Figure 1, can be transformed into RDF triples [6] (e.g. Face-
is_bounded_by-Edge) and used as input data for relational 
learning methods. Geometrical attributes, such as face type, 
edge convexity, etc… can similarly be transferred as known 
facts (e.g. Edge - has_convexity - Convex). The combination 
of these topological and geometrical attributes with 
information on connections between components provides 
meaningful descriptors to interrogate assembly 
configurations. Thus, applying relational machine learning 
techniques on relational data from large CAD assembly 
models provides an opportunity to rapidly identify similar 
components and geometric regions as well as to visualize 
duplicated, missing or inconsistent relationships. Currently, 
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the size and complexity of large assembly structures make 
their analysis time-consuming. For example, a full 
mechanical aero-engine model can contain 5000 solids, 
0.3M faces and 1M edges. This data will represent millions 
of entities and known facts making tensor factorisation, such 
as the RESCAL algorithm proposed by Nickel et al.[3], an 
ideal candidate to experiment with. 

Figure 1. The topology of a Boundary 
Representation (B-Rep) Model can be represented 

as a graph. 

This paper demonstrates the suitability of tensor 
factorization techniques as a relational learning approach for 
CAD assembly models. Our objective is to show how the 
scalability of these techniques can provide designers and 
analysts with rapid feedback on the configuration and 
consistency of the models they are generating or modifying. 

Thus, it is illustrated how to learn efficiently from simple 
relational information available in CAD assembly models, 
e.g. adjacency between faces and solids, components’ 
connectivity for tasks like:  
• Entity resolution: (also known as object

identification or instance matching). Here, the entity
resolution task consists in identifying which entities
(i.e. components, B-Rep faces and edges) in the CAD
assembly refer to a similar input entity considering the
B-Rep structure as well as the components
connectivity within the assembly.

• Link-based clustering: entities (components, B-Rep
faces and edges) are sorted into groups based on the
similarity of their attributes and relationships. By
iterating on the generated clusters, the user can create
groups of similar components in order to filter the
assembly. In addition, identical components which
may not appear in the same cluster can expose
assembly model inconsistencies where neighbouring
relationships are not consistent between components.

Finally, by demonstrating how to efficiently look for 
similarity in the CAD models, the aim is to reduce the 
currently tedious and highly manual tasks when extracting 
and preparing simulation analysis models from a large 
assembly model. 

2. RELATED WORK

2.1 3D shape retrieval 
The approach in this paper is related to 3D shape retrieval 
methods. Literature on 3D model retrieval is vast and a 
comprehensive literature survey has be provided by 
Tangelder & Velkampt [7]. A brief overview on this topic is 
given here. Feature-based methods use shape descriptors to 

match similar shapes. For example, using spherical 
harmonics shape descriptors, the 3D search engine of 
Funkhouser et al. [8] retrieve similar objects from a database 
of 3D shapes. Robust and efficient feature-based methods 
convert the entire geometry model to global descriptors 
[7,9]. Kazhdan et al. proposed a rotation invariant descriptor 
based on spherical harmonics [10]. Graph-based methods 
evaluate the similarity between two 3D models by extracting 
a graph structure from the shape’s geometry. The extracted 
graph links the components of the shape together. This 
graph, examples of which include a model graph [9], a reeb 
graph [11] or a skeleton graph [12,13], is used to compare 
shapes. Local model retrieval aims at finding similar 
subparts of different 3D models. For design reuse, Bai [9] 
extracts hierarchical descriptors from a CAD model feature 
tree to compare subparts of CAD models. Although this 
model graph method allows quick database queries, it relies 
on a CAD feature tree which is not unique for a given shape 
and is not always available [14]. To retrieve partial 
correspondences in CAD model, You and Tsai[15] define 
graphs corresponding to the B-Rep structure enriched with 
geometric attributes such as surface types, curve types and 
edge convexity. Although these 3D retrieval techniques 
could be applied to identify similar components in a CAD 
assembly, they do not consider the relationships between 
components within the assembly. Two components can 
share identical shapes but can be connected to completely 
different components in an assembly or have different 
connectivity configurations. Our objective is to identify 
similarities considering all available relationships in the 
CAD assembly.  

2.2 CAD Assembly analysis 
Assembly retrieval methods have been proposed to search 
and reuse complex mechanical assembly models. In [16], 
Chen et al. proposed a multilevel assembly descriptor to 
distinguish CAD assemblies. The descriptor is a 
combination of the hierarchical assembly structure, the 
interactions between components and global shape 
descriptors of components and sub-assemblies. A graph 
matching algorithm is then used to identify similar 
assemblies. To accelerate the matching process, an indexing 
mechanism is introduced. However, only the assembly level 
is considered (not the individual components’ B-Rep 
structure). In addition, the hierarchical structure is not 
always available to an analyst for a large assembly [17] or 
not adapted to analysis requirements [18]. Hu et al. [19] uses 
a vector space model (mostly employed in document 
retrieval) for lightweight assembly retrieval. Although 
achieving interactive results and allowing partial matching, 
CAD components are transformed into simplified meshes 
(losing topological and geometrical information) and 
interactions between parts are not considered. Wang et al. 
[20] propose an assembly retrieval method efficiently 
comparing assembly models, represented as point sets using 
an Earth Mover’s Distance-based matching method [21] to 
evaluate the dissimilarity between signatures, however, does 
not consider the relationships between parts in an assembly 
in the matching. The enriched assembly model EAM of 
Lupinetti et al. [22,23] contains (among other descriptors) 
patterns of repeated components as well as an interface layer 
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encoding the relationships between the different parts in an 
assembly model. EAMs, represented as graphs, are then 
compared by solving sub-graph isomorphism problems. The 
interface layer is also not considered when identifying the 
repeated components. 

Regarding CAD assembly analysis, the tools available in 
CAD systems are mostly limited to clash/clearance analysis 
between components. Using Boolean operations, Shahwaan 
et al. [24] extracts and classifies interfaces between 
components to qualitatively identify the functional 
designation of components. This method considers the 
kinematic links between components to infer information, 
however, it requires a consistent model. Misaligned or 
missing components stop the application of inference rules. 
In addition, inferring on a large assembly is time consuming, 
making this approach difficult to use for quickly identifying 
inconsistencies. To overcome the scalability issue of 
Boolean operations in a CAD kernel, Jourdes et al. [25] has 
demonstrated how to efficiently extract assembly interfaces 
using a GPU ray casting approach. In the ontology-based 
approach of Vilmart et al. [18], information on repetitions of 
components and sub-assemblies serves as a basis to apply 
inference rules and deduce new assembly information, such 
as component designation. However, here too, components 
are grouped based on a one-to-one comparison using 
common shape descriptors such as symmetries. Due to the 
combinatory problem, such an approach is also difficult to 
scale on large assembly models. To the best of our 
knowledge, approaches to analyse the consistency of an 
assembly model which consider the relationships between 
components have not been proposed in literature. 

2.3 Statistical Relational Learning 
Statistical Relational Leaning (SRL) is concerned with 
domain models where entities are interconnected by multiple 
relations. In their review of Relation Machine Learning for 
Knowledge Graphs, Nickel & Murphy [1] classify SLR 
methods in two main classes: graph feature models and 
latent features models. 

The first class captures the correlation using statistical 
models based on observable properties of the graph. For 
example, an unknown relation can be derived from the 
existence of a path in the graph. Initially, local similarity 
techniques were used to analyse the nearest neighbourhood 
of entities. In [26], Adamic & Adar proposed the frequency-
weighted common neighbours index to identify similarity of 
entities by counting the common items between neighbours. 
As mentioned in [1], local similarity techniques scale well 
on large graphs, however, they are limited to single 
relationships where similarity is identified locally based on 
the direct neighbourhood. To consider that two entities can 
be similar without having common attributes, global 
similarity indices have been proposed. Among them, the 
Leicht-Holme-Newman index [27] analyses the ensemble of 
paths between entities. Although, the predictions are 
improved on graphs when relationships are non-local, these 
techniques might require more computation time [1,28]. For 
multi-relational knowledge graphs, where each edge is 
labelled to denote the type of relationship between the two 
vertices, Lao & Mitchell [29] propose a Path Ranking 

Algorithm to infer new beliefs in an imperfect knowledge 
base by predicting the probability of missing edges. Unlike 
latent feature models, this technique provides an easily 
interpretable model of the extracted features on the 
observable data. For further literature, Lu et al. [28] provides 
a survey on similarity indices used for link prediction, 
determining whether a particular relationship exists or 
retrieving relationships by their likelihood. 

The second SLR class captures the correlation between the 
node/edges using latent features. Unlike graph-feature 
models which use features observed in the data, the latent 
features associated to entities have not been observed in the 
data, but are assumed to be hidden causes for the observables 
features [2]. Similar entities are derived from operations on 
these latent features. The objective of this SRL class is to 
infer the latent features automatically from the data. Tensor 
factorisation models have been proposed for learning from 
multi-relational knowledge graphs. Among them, Franz et 
al. [30] propose the TripleRank method to rank and produce 
richer description of linked data on the semantic web. The 
RESCAL factorisation model of Nickel et al. [2,3,31] has 
successfully demonstrated its ability to predict unknown 
triples on large knowledge bases consisting of millions of 
entities and known facts. RESCAL captures similarities of 
entities in the relation domain via interactions of the latent 
features. Jenatton et al [32] proposed a tensor factorisation 
model for highly multi-relational data, where the number of 
different relations is large. The reference paper of Kolda and 
Bader [33] provides an extensive review on tensor 
decomposition models and their applications. 

Finally, as mentioned in [1], it is difficult to determine if a 
relational latent feature model or graph feature model is 
better for learning knowledge graphs. Authors in [1] agree 
that latent feature models are suited for data showing global 
relational patterns. Tensor factorization techniques are 
computationally efficient on a large database when relations 
can be explained using a small number of latent variables. 
Graph feature models are best suited when graphs patterns 
appear locally. For example, the Path Ranking Algorithm 
[29] is efficient when relationships can be explained from 
short paths in the graph. 

In the context of this work, we propose to transcribe CAD 
models (described as a B-Rep model) as knowledge graphs 
to learn from. In this work, the RESCAL[3] tensor 
factorisation model is used as the learning model. This 
choice is based on the following assumptions: 
• Similar entities (i.e. CAD components, B-Rep faces

and edges) are not necessarily close in an adjacency
graph. For example, standard components (bolts,
nuts...) can appear in various locations in a mechanical
structure. The path linking those components based on
component adjacency might be long, thus making the
graph feature model less efficient. On the other hand,
the shared entity representation in RESCAL captures
global dependencies due to the shared latent
representations.

• One objective is to provide quick feedback to the
designer/analyst on modelling errors, allowing quick
design iteration to correct the CAD model. In [2], the
authors demonstrated that the RESCAL model scales
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linearly with the number of entities. Then, once the 
factorised model is computed, the user can quickly 
query if a specific relationship exists or not, essentially 
in real-time. 

• Another objective is to automatically generate clusters
of CAD components to help the user filter their 
assembly for a specific analysis. Depending on the 
input relationships selected by the user, the latent 
representations of entities can be used by clustering 
algorithms to automatically generate groups of 
components. 

The novelty of this paper is the use of a latent-features 
method based on tensor factorisation to compare B-Rep 
entities (solid, faces and edges) in a CAD assembly. B-Rep 
entities and their connections within the assembly are 
extracted and stored in a large knowledge base to learn from. 
By capturing the interactions of the latent features, the tensor 
factorisation considers all the input relationships between 
the B-Rep entities. Entity similarities are derived from 
operations on these latent features, which are then used to 
detect design or assembly inconsistencies. 

3. TENSOR FACTORIZATION OF CAD
ENTITIES 

3.1 Proposed pipeline 
The method proposed in this work to analyse the consistency 
of CAD assembly models is decomposed into the following 
three main steps (refer to Figure 2). 

Step 1. Pre-processing: extract data and fill the tensor 

The first step extracts the data from the CAD assembly 
models. This data is used to populate a three-way tensor X of 
size n ´ n ´ m which will be factorised in Step 2. Similar to 
[3], the entries of the tensor X on the two first dimensions 
correspond to the combined entities to analyse. In this work, 
all the solids S, faces F and edges E of the B-Rep models B-
Rep are defined as entities. Additional geometrical types 
(e.g. surface type, edge type), interfaces and convexity 
attributes are also entities.  

The third dimension contains the m different types of 
relations between the entities. For each existing known 
relationship of a kth relation between the ith entity and jth 
entity, a tensor entry 𝑥"#$ 	= 	1 is added to X. Otherwise, for 
non-existent relationships, the entry 𝑥"#$  is set to 0. Hence, 
for each kth relation, a frontal slice 𝑋$ = 𝑿:,:,$ is generated. 
This slice contains all the existing relationships (i.e. defined 
as semantic triples ith entity - kth predicate - jth entity in the 
RDF format) linking the entities through this kth relation.  

In order to provide a first set of descriptors of the solid 
models, we propose to transfer the internal B-Rep structure 
into the slices of the tensor. As highlighted by You and Tsai 
[15], the benefit of using the B-Rep structure is its invariance 
to geometric transformation. Alignment of objects is not 
required before extracting the geometric signatures.  

The following four main tensor slices are generated in this 
work: 

• The first frontal slice X0 of X contains the topological
relations between solids, faces and edges of the B-Rep
model. For example, if a topological relation “Si -
is_bounded_by - Fj” exists, an individual tensor entry
𝑥"#, 	= 	1 of X is generated linking the ith entity (solid
Si) to the jth entity (face Fj).

• The second slice contains the relations between the
faces/edges and their geometrical and convexity type.
For example, the fact that a face is planar is described
by the relation “Fj - is_type - GeomTypep” translated
by the entry 𝑥#-. 	= 	1	in the tensor slice X1.

• The third slice contains the interface relationships
between solids. If a solid Si is touching/penetrating
another solid Sl, or if there is a gap between the solids
(smaller than a user-defined distance) the two
relations “Si – has_interface - Io” and “Sl –
has_interface - Io” are added as new entry 𝑥"/0 	= 	1 in
the slice X2. The relation between the interface and the
interface type (interference, contact or gap) is also
added.

Figure 2 Overview of the proposed approach to 
learn similarities and inconsistencies in CAD 
assembly model using the RESCAL[3] tensor 
factorisation model.  
The number of slices of the tensor model is not limited, new 
slices can be added (see discussions section 6). The objective 
of this paper is to demonstrate the applicability of the tensor 
factorisation on CAD assembly models. The current 
approach is limited to topological relationships and 
straightforward geometrical parameters which are directly 
available from the CAD system. Additional parameters 
generated by the user, such as material properties or 
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simulation attributes can be added in the model. Adding in-
depth shape descriptors to better describe freeform surfaces 
or graph structures (e.g. medial object or reeb graph) is 
discussed in section 6 and left for future work. 

Step 2. Tensor factorisation using RESCAL[3] 

Given the tensor X of size n ´ n ´ m built in step 1, the 
RESCAL factorisation model proposed by Nickel et al. in 
[3] was used to compute a factorisation of X. RESCAL 
factorises each frontal slice Xk of X into the following matrix 
product:  

𝑋$ ≈ 𝐴𝑅$𝐴4,   𝑘 ∈ 1. .𝑚 

where 𝐴 is a n ´ r factor matrix, 𝑅$ is r ´ r matrix which 
denotes the kth frontal slice of an adjacency R tensor. 
(RESCAL jointly factorises these adjacency matrices 𝑅$, 
such that 𝐴 is common for all frontal slices of X), r is a user-
defined parameter defining the number of latent components 
(or common factors) in the matrix 𝐴. The matrix 𝐴 can be 
viewed as an embedding of the entities in the r-dimensional 
latent space [2]. The matrices 𝐴 and 𝑅$ are computed by 
solving a regularized minimisation problem as described in 
[3]. 

Step 3. Learning similarities, inconsistencies of CAD 
assembly data. 

Given the factorization of the initial tensor X, the essential 
feature of the RESCAL method is that the latent space 𝐴 
reflects the similarity of entities in the relational domain [2]. 
Here the similarity of entities refers to the similarities of their 
relationships. For example: if two solids are bounded by the 
same type of faces, which are bounded by the same type of 
edges (slice X0); if these two solids are also connected to 
other objects having similar topology, and so on…; there 
might be evidence that the two solids are identical within the 
assembly structure. Hence, two entities ei and ej can be 
compared by looking at their individual latent 
representations 𝑎" and 𝑎# in 𝐴. These latent representations 
not only measure the common attributes between the entities 
but also consider the similarity of related entities and 
relations involved in the relationships of the ith and jth entity. 

The RESCAL model has been initially developed to perform 
relational learning tasks on large sets of relational data from 
the semantic web’s Linked Open Data [31]. This paper 
illustrates how the approach can be used on large CAD 
assembly models to extract components or component 
entities in a range of scenarios. As described in Section 1, to 
demonstrate the applicability of tensor factorisation, the 
relational learning tasks of entity resolution and link-based 
clustering are performed. Section 4 develops these specific 
tasks and applies them to CAD assembly data. 

4. USAGE SCENARIOS FOR CAD/CAE
INTEGRATION 

The objective of relational learning is to build a model of the 
domain from relational data that can be incomplete, noisy or 
even contain false information, thus avoiding the need for 
expensive user clean-up operations on CAD assembly data. 
From this relational model, specific learning tasks can be 

performed. In this section, the benefit of deriving a 
factorized model of a CAD assembly to analyse the 
consistency of the design will be described. The following 
usage scenarios are proposed in the context of CAD/CAE 
integration to help analysts understand and correct the input 
CAD models with a view to generating simulation models. 

4.1. Entity resolution: retrieving similar 
entities in the CAD assembly 
To simplify the approach, a CAD component is assumed to 
be modelled as a B-Rep solid. Following the data extraction 
of a CAD assembly (see Step 1 in Section 3.1) a tensor is 
generated containing the B-Rep solids, faces and edges. The 
tensor is then factorised (see Step 2 in Section 3.1) and 
produces a matrix 𝐴 reflecting the relational similarity of 
entities.  

The scenario is then to input an entity: a solid, a face or an 
edge and to identify which entities are similar to it in the 
CAD assembly. As mentioned in Section 3.1, similarity 
refers to the data contained in all relations in the initial 
tensor. As the topology relations of the CAD components are 
input in the tensor, together with the connection between the 
components, two CAD components (i.e. solids) are similar 
not only because they share a similar topological graph, but 
also because their similarity is propagated through their 
connections with the other components in the assembly 
which also have the same topological graph. 

Hence, to compare an input entity ei, given by the user, to 
any other entity ej, a ranking of all entities is computed using 
their latent representation: the vectors ai and aj 
corresponding the ith and jth row in 𝐴.  

Following the approach of Nickel [2], to compare two 
entities, the function k is calculated as such: 

𝑘:𝑎", 	𝑎#; = exp?−
A𝑎" − 	𝑎#A

0

𝛿 C, 

where 𝛿 is an additional user-given parameter to 
exponentially scale the similarity value.  

Figure 3 Retrieving similar solid entities. (a) The 
solid 78 is given as input and compared with all 
other solids in the assembly. (b) Solids are 
coloured based on their similarity value with solid 
78. In Red, the solids 373, 481 and 559 are exactly
similar to 78. 
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Figure 3 shows an example of the entity resolution on a 
simple model containing 15 solids. Solid 78 (one of the 
bolts) is given as an input and k is calculated for all the 
solids. For all the other bolts the same k value is returned. 
This result is expected as the bolts have the same topology, 
same face type, same edge type and convexity type. In 
addition, their faces have the same number of singularities. 
Most importantly, they are connected to the same 
components which are also identical. Their relations in the 
tensor X are symmetric which is reflected by having identical 
latent representations. Here, the data given as input in the 
tensor is not sufficient to distinguish the bolt 373 (largest 
bolt) being less similar than the same-size bolts 559 and 481. 
Indeed, depending on the designer/analyst need, additional 
shape characteristics should be added and evaluated.  

Figure 4 Example of the consideration of 
interference relationship between solids. The bolt 
373 intersects the plates 623, 953 and 788. This 
configuration differs from the bolts 78, 559 and 481 
having the same diameter as the plate holes 
(touching interface). 373 is less similar to 78 than 
559/481 to 78 due to the consideration of the 
interference relationships. 
In Figure 4 the bolted junction model is modified by 
changing the diameter of the holes in the plate bodies (623, 
788 and 953) in order to introduce an interference between 
the bolt 373 and the plates (the diameter of bolt 373 being 
bigger than the holes diameter). These interferences modify 
the relationships of the bolt 373. Now, as shown in Figure 4, 
bolt 373 is still very similar to input 78 but slightly less 
similar than the bolts 373 and 481. This result illustrates how 
the RESCAL factorisation is able to consider all the relations 
as opposed to pairwise comparing entity to entity.  

Once the factorisation is computed (see Section 0 for 
computation time), interrogating the 𝐴 matrix is quick (<1s 
for an 𝐴 matrix of size 175000 ´ n, corresponding to an 

assembly with 1000 solids, see Table 1 car engine model). 
Hence, the user can easily select a component in the 
assembly and ask which components are similar. By 
changing the 𝛿 parameter and adding a threshold for k (e.g. 
k>1e-10), the user can quickly filter the entities from the 
more similar to the less similar. Figure 5 illustrates entity 
resolution results for different values of the 𝛿 parameter. In 
the prototype implementation used to test the applicability of 
the proposed method, a slider component has been designed 
allowing the user to interactively discover similar objects for 
a given input. As shown in Figure 5(a), when setting 𝛿 to a 
low value, the method returns only the most similar bolt 
components. When increasing 𝛿, more components are 
displayed until all components pass the threshold for k. Here, 
the scenario is to use this approach to quickly select similar 
components to keep/remove for the final simulation model. 
For example, in Figure 5(b), the 10 camshaft fingers (shaded 
component) are found distinctively even when 𝛿 is high 
(relative to this specific CAD model). This can be explained 
by the relatively distinct shape of the component within the 
assembly.  

The input entities are not limited to solids but can also be 
faces or edges. On Figure 5(d) a planar face lying on the head 
of the bolt of the bolted junction model is selected. Similar 
faces are not only found on the same solid but also on all the 
similar bolts, showing that topological relations and 
components’ interfaces are simultaneously considered in the 
factorisation.  

4.2. Set of entity resolution: finding similar 
features 
In this section, it will be illustrated how the entity resolution 
can be extended to sets of entities, still using the property of 
the 𝐴 factor matrix in addition to the face adjacency graph 
from the B-Rep model. A usage scenario is to find similar 
features of a B-Rep solid, given one as an input. Here a 
feature refers to a set of B-Rep faces in a solid. Hence, the 
user inputs a set of adjacent faces and the algorithm returns 
a list of sets of faces considered similar. The following 
Algorithm 1 details the procedure. The returned list of 
features is ranked by summing k for each element of the 
feature (k has been previously calculated for each similar 
entity of each face of the given set of faces). Hence, the 
similar features can be visualized by the user in a similar 
manner to the entity resolution of Section 4.1.  
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Figure 5 Examples of the entity resolution learning task. For a given solid or face entity, the user can modify 
the similarity constant in order to display more to less similar entities.  

 

 

 
Figure 6 Entity resolution on set of faces. The user 
can visualize similar sets of faces on a B-Rep 
component given an input set of faces. 

Figure 6 shows an example of entity resolution on sets of 
faces. The displayed model is a standalone B-Rep solid 
which has been created from the Boolean union of multiple 
individual components. The analysts’ workflow is to remove 
small features, such as bolt heads considered as not relevant 
for the simulation they are to carry out. Given as an input the 
Set_0(F1,…Fn), shown highlighted in the box, the approach 
herein returns 5 similar features for a given δ. Similar to 
Section 4.1, the user can vary the value of δ to have more or 
less similar features returned. The processing time, however, 
is higher as more operations are performed compared to 
Section 4.1. For the example shown in Figure 6, Set_4 and 
Set_5 are ranked as “less similar” than 1, 2 and 3. Although, 
the latent factors in 𝐴 cannot be interpreted directly, the 
difference can be explained by looking at the surrounding 
faces of the features in the model. Here Set 4 and 5 are 
connected to faces which are less similar to the faces 

surrounding the input Set 0 than the faces connected to Set 
1, 2 and 3.  

 

 
Algorithm 1 Identification of similar features given 
an input set of adjacent face. 

4.3 Link-based clustering: building a 
taxonomy 
In [31], authors have shown the capability of RESCAL to 
perform link-based clustering on large Linked Open Data 
databases containing millions of entities and known facts. As 
mentioned in Section 1, the objective is to partition entities 
into groups based on the similarities of relationships. In this 
section, a hierarchical clustering algorithm is used to cluster 
the entities using their latent representation in 𝐴. In this 
latent-component space, each row of 𝐴 defines a vector of 
dimension r. This set of vectors is given as input to a 

Algorithm 1 IdentifySimilarFeatures 
Input: fea /*given set of adjacent faces 
Function AddSimilarNeighbours (Lfea , Rfea)  

/* add element of Rfea (ranked list of a similar) to the list 
of similar features 
for each feature do 

add element of Rfea to feature if element shares a 
common edge with feature. 
add k value of element to kfea /* kfea is the sum of k 
of each element in the feature 

Result: Lfea /* list of a similar features 
Initialize Lfea with the list of similar faces of the first face in 
fea 
for each face in fea do  

Rfea ← ListOfSimiliarFaces(face) /* keep the k value for 
each similar faces  
Lfea ←  AddSimilarNeighbours(Lfea , Rfea)) 

Sort Lfea by kfea 
Result: Lfea /* list of a similar features 
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hierarchical clustering algorithm. In this work, the algorithm 
provided by the SciPy Python library [34] is used. 

Figure 7 illustrates the result of the hierarchical clustering 
for the bolted junction model. The corresponding 
dendogram chart is shown. Here a threshold distance set to 
0.05 returns 4 clusters corresponding to the 4 types of solids 
present in the model. By changing the threshold distance 
value, the user can visualize different cluster configurations.  

 

 
Figure 7 Hierarchical clustering of the bolted 
junction model. By setting a threshold, the user 
can quickly iterate different clusters 
configurations. 

In a CAD/CAE context, the identification of similar 
components and similar regions of space is meaningful to 
save time in the FEM meshing operations and boundary 

condition application. Although a CAD assembly tree may 
exist, as explained by Vilmart [18], its structure might not be 
adapted for simulation purposes. Indeed, depending on the 
design protocol and user decisions, similar components can 
appear in multiple branches of the assembly tree. They are 
not part of the same instance. A typical example is the 
assembly of standard junctions. When multiple suppliers are 
involved in the assembly design, they will use their own 
junction models which will appear as different sub-
assemblies in the final model. As mentioned in [31], an 
application of the link-clustering is the automatic generation 
of taxonomies. In the context of this work, under the 
supervision of the user, a CAD assembly model can be 
analysed and similar entities (components, faces, or edges) 
can be grouped. Figure 8 shows the result of the clustering 
for the radial engine model [35] (containing 374 solids) 
when the threshold is set to 5e-3. The largest clusters contain 
standard components which are repeated multiple times in 
the assembly. In this model generating these clusters helps 
an analyst to easily filter the assembly components. For 
assembly meshing requiring conformal meshes, when the 
components’ interfaces imprints are also given as input, the 
user will need only to mesh one instance for each cluster and 
copy it to the groups of similar entities.  
 

 
 
 

 
Figure 8 Application of a hierarchical clustering algorithm. The A matrix is used as input for the clustering 
algorithm. For this model, with a distance threshold of 0.005, 56 clusters of solid entities are generated 
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4.4 Identification of modelling 
inconsistencies 
A practical application of our approach concerns the 
identification of modelling inconsistencies in a CAD 
assembly. Indeed, when displaying the generated clusters, 
some entities might not appear in the expected cluster. 
Figure 9 shows examples of inconsistencies found in CAD 
assemblies when analysing the clusters. In Figure 9(a), two 
bolts (in orange) are not identified as being part of the bolt 
cluster. This is due to the connectivity with neighboring 
components which is not consistent compared to the other 
bolts in the component. Their positionings generate 
interferences with the casings changing their relationships in 
the global tensor. In Figure 9(b), two groups of components 
having the same shape are connected differently to the 
casing. Here too, this configuration generates different 
relationships for the two groups of components. Although, 
clash management is usually handled by automatic scripts in 
CAD software, it obeys strict rules conventionally defined 
by the user. Here, this approach could complement the clash 
detection analysis as it doesn’t follow any predefined rules 
and could be apply as a visual quality check tool. 
 
 

 
Figure 9 Example of modelling inconsistencies 
found following the link-based clustering task. 

In Figure 9(c), the clustering is applied on face entities and 
displayed (one colour represents one cluster of faces). The 
symmetries of the model are not totally reflected in the 
colouring applied to the faces. An inconsistent filleting 
modifies the object’s topology and an inconsistent edge 
convexity type modifies the convexity relationships of the 
cyclic stiffeners. These inconsistencies break the cyclic 
symmetry property. By using a relational learning approach, 
the user can visualize the similarities between the input 
entities and then identify the inconsistencies which need to 
be corrected. Having a consistent CAD assembly is highly 

valuable for simulation and manufacturing. For example, a 
finite element simulation of an assembly requires all the 
contacts between components to be defined. Running a 
process on a large assembly to automatically apply these 
contacts requires a clean input model, where all the 
components are correctly positioned. This approach 
provides a low-cost method to help the designer identify 
modelling issues upfront, without having to interrogate an 
entire assembly model component by component. 

Figure 10 shows another example of modelling 
inconsistencies found when trying to identify similar 
features (see Section 4.2). Initially, a bolt head is given as 
the input set of faces. Choosing a small value for δ to display 
the most similar features, one of the bolt heads is not listed 
(see BoltHead_8 in Figure 10(a)). Increasing δ makes 
BoltHead_8 appear with a similarity k value significantly 
different from the other bolt heads. Looking closely at the 
CAD model for BoltHead_8, it appears that the bolt is 
intersecting the casing component before the Boolean union. 
This intersection results in BoltHead_8 having a slightly 
different topology from the other bolt heads, which is 
reflected in the latent factors of 𝐴.  

 
Figure 10 Inconsistency in the modelling of Bold 
Heads. Increasing the scale value of the similarity 
analysis reveals that the similarity of BoltHead_8 
to BoltHead_0 is higher than the others bolt heads. 
(a) Entity resolution with small δ, (b) same entity 
resolution with a larger δ, (c) BoltHead_8 is 
intersecting the casing resulting in different 
geometry and topology.  

Identifying inconsistent geometrical regions of a CAD 
component is relevant for simulation. It saves time for an 
analyst to filter the regions to simplify or remove before 
meshing for finite element modelling. In this paper, the 
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identification of similarities and the link-based clustering 
can be considered as an interactive tool for designer/analyst 
to verify the consistency of the CAD models. Ideally, 
processes could be developed to automate this identification.  

 

5. EVALUATION ON LARGE CAD 
ASSEMBLIES 

5.1 Scalability of the tensor factorisation 
In [3], the authors designed the RESCAL factorisation 
model to be able to scale to large knowledge bases consisting 
of millions of entities, hundreds of relations and billions of 
known facts. In the context of this work, scalability is 
important as analysts tend to simulate increasingly larger 
assembly models containing thousands of components [17]. 
Even the design of standalone components can become 
highly complex in industry. For example, an intercase 
component in an aero-engine model contains around 10,000 
CAD faces and 25,000 edges. It is essential to consider the 
running time of an analysis tool on such a large model.  

RESCAL has been designed to scale linearly with the 
number of entities (see [2] giving details on the 
computational complexity). In this section, the scalability of 
the model is evaluated by running the proposed approach on 
various CAD assembly models. In this work, RESCAL was 
integrated with PythonOCC [36] (a Python version of the 
open-source geometric kernel OpenCascade [37]). The 
extraction of topological data and the interface detection is 
performed using the Siemens NX 11 API [38] and the 
Parasolid [39] library. Similar data extraction can be 
performed in other CAD systems. 

The factorisation and clustering was carried out on a 
windows workstation with 4 Intel i7-6700 3.40 GHz CPUs, 
32 GB RAM. Table 3 presents the computation time for 
different CAD models shown in Figure 16. The models in 
Figure 8 and Figure 16(a,e,f) are provided by the GrabCAD 
[35] community. These examples were used to verify the 
applicability of the proposed approach and its scalability to 
large models. As expected, the timing of the factorisation is 
proportional to the number of entities. For the largest model, 
the car engine, the factorisation time is less than 1 minute 
with a r, the number of latent components (or common 
factors) in the matrix 𝐴, equals to 100.  

 
Figure 11 Evolution of the dimension of the feature 
latent space on the computation time to factorise 
the tensor. 

As mentioned in [2], the tensor factorization computational 
complexity grows cubically with r. Error! Reference 
source not found. illustrates this evolution on two use-cases 
for different value of r. Depending on the size of the model, 
choosing this number can have an influence on the total 
computation time. The number of latent features r to 
consider is difficult to evaluate. Although in-depth 
evaluation has not be done in this work, our tests on the use-
cases of Figure 16 using r equals to 100 allowed to generate 
clusters of expected similar shapes. Our observations 
suggest using a low rank (e.g. between 20 and 50) for small 
assembly (<200 solids) to avoid overfitting the model and a 
larger rank for larger assemblies to include more features 
and avoid underfitting. Once the factorization is computer, 
the clustering operation is almost instantaneous, making it 
possible to test different cluster variants. Figure 16 shows 
the cluster variant corresponding to δ = 1e-5 for each 
assembly model. 
 
5.2 Comparison to graph-based and 
spherical harmonics-based methods 
The tensor factorization approach enables the user to quickly 
interrogate the factorisation matrix when performing an 
entity resolution task. In this section we compared our 
approach for this task to two similar methods from the 
literature: the spherical harmonics approach of Kazhdan et 
al. [10] and the graph matching approach similar to [15] and 
[22,23]. For this evaluation, our use-case is the Vesta model: 
a large industrial CAD assembly provided by Rolls-Royce 
Plc and containing 6503 solid entities (see Figure 12 (b)). In 
Table 1, the runtime of the entity resolution task has been 
recorded for the three methods on five different components. 
For the spherical harmonics method, we use the executable 
of Kazhdan[40] with 17 spherical functions having 32 
spherical harmonics. For the graph matching method, we 
extract the B-Rep topological face-edge graph of each solid 
and enrich it with the same geometrical information as the 
tensor slices, see Section 3.1, i.e. surface/edge type and edge 
convexity. To perform the sub-graph isomorphism, we use 
the VF2 algorithm implemented in the python library 
NetworkX[41]. 
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Figure 12 Entity resolution evaluation task on large 
assembly (Vesta model, courtesy of Rolls-Royce 
Plc). (a) query components, (b) the CAD assembly 
with 6503 solids, (c) example of a query using the 
tensor factorization-based method. 

Table 1 Entity resolution timing comparison for 
the 5 components of Figure 12. 

Method Global 
descriptor: 
Spherical 
Harmonics 
[10] 

Graph 
matching: 
Subgraph 
Isomorphism 

Relational 
Learning: 
Tensor 
factorisation 

B-Rep stats Nb Solids: 6503, Nb Faces: 128 638,  
Nb Edges: 319 500 

CAD data extraction 3mins 01s 

Interface detection  10mins 15s 

Specific Data 
preparation task 

Shape 
descriptors 

computation 

Graph 
generation. 

Tensor 
Factorisation 
(rank: 100) 

1min 42s 0.77s 2mins 18s 

Entity Resolution task 

Solid_0  
5 faces, 4 edges 0.14s 0.06s 0.07s 

Solid_1  
20 faces, 28 edges 0.12s 3.11s 0.07s 

Solid_2  
19 faces, 48 edges 0.14s 15mins 43s 0.07s 

Solid_3  
36 faces, 36 edges 0.11s 12mins 36s 0.07s 

Solid_4  
141 faces, 241 edges 0.12s 2mins 18s 0.07s 

As shown in Table 1, the spherical harmonics approach 
requires a specific data preparation task to calculate the 
descriptor. Similarly, our approach requires to compute the 
factorisation of the tensor. The graph matching method can 
directly operate on the B-Rep graph, however, depending on 
the sub-graph configuration of the query component to 
match in the large assembly graph, the entity resolution task 
can be time consuming. This is particularly true when the 
combinatory is high, such as for the repeated components 
Solid_2 and Solid_3 corresponding to the numerous blades 
and seals present in the assembly. In this case, the matching 
algorithm has to look for a medium-size sub-graph pattern 
repeated several times into a large graph. The other two 
approaches, on the other hand, can directly compare the 
entities by looking at their factorised/shape descriptor 
vectors. Table 2 summarises the pros and cons of the three 
methods.   

Table 2 Advantages and disadvantages of 
the evaluated methods 

Method Pros Cons 

Global 
descriptor: 
Spherical 
Harmonics 
[10] 

Efficient to identify 
components having 
globally similar shapes. 
Query components can 
be stored in a database. 
Not sensitive to CAD 
topological variation. 

Do not detect subpart 
(feature) in shape. Do 
not consider CAD 
topological 
segmentation. Do not 
consider interfaces 
between components. 

Graph 
matching: 
Subgraph 
Isomorphism 

Can match sub-shapes 
from a database to a new 
model. 

Require an initial 
segmentation. Sensitive 
to CAD topological 
variation. Sensitive to 
the combinatory of 
different entities. 

Relational 
Learning: 
Tensor 
factorisation 
(our 
approach) 

Efficient to interactively 
compare entities within 
the same model. Able to 
analyse all relationships, 
considering interfaces 
between components. 
Quick query. 

Require an initial 
segmentation. Cannot 
compare subpart stored 
in a database. Sensitive 
to CAD topological 
variation 

 
To evaluate the clustering task performance, we built up a 
ground truth model of the Vesta assembly containing 
annotated components to compare with the clustering results 
obtained from our approach. Figure 13 (a-c) illustrates this 
model. 6218 solids out of 6503 have been grouped into 148 
classes to represent a model an analyst would usually start 
with when setting up a FEM simulation on such large model. 
Indeed, an intuitive approach is to group similar repeated 
components along the aeroengine rotation axis. We then 
computed two cluster performance metrics: the adjusted 
rand index and the completeness scores using the scikit-learn 
python library[42]. The adjusted rand index measures from 
0 to 1 (1 been the perfect score) the similarity between two 
clusters. The completeness metrics, measuring from 0 to 1 
(1 been the perfect score), are divided into a homogeneity 
score (measuring how much each cluster contains only 
members of a single class) and a completeness score 
(measuring how much all members of a given class are 
assigned to the same cluster). The V-measure is the 
harmonic mean of the homogeneity and completeness 
scores[43].  
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Figure 13 Evaluation of the clustering task on the Vesta model (courtesy of Rolls-Royce Plc) using the 
adjusted rand score and completeness score metrics: (a) the initial annotated model containing 6218 
annotated solids (in color) of 6503; (b) display of the annotated solid; (c) Ground truth model containing 148 
classes (one displayed component corresponds to one class), (d) clustering result based on spherical 
harmonics descriptors [10], (e-f) clustering result using our approach. 
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As shown in Figure 13, our approach scores over 0.7 for the 
adjusted rand index and over 0.9 for the V-measure. 
However, it never reaches the ground truth classes 
configuration. This can be explained by the fact that our 
approach does not consider the position of components along 
the axis of rotation. Indeed, the ground truth model separates 
blades and vanes components depending on their axial stage 
position in the aeroengine. This information is not given as 
an input to the tensor. However, by considering the 
interfaces between components, it starts separating the 
blade/vanes components into the compressors and turbines 
areas. This separation cannot be reached when using the 
spherical harmonics approach as it compares components 
individually. As discussed in the following section, future 
work is dedicated to improving these metrics by 
incorporating additional information in the initial tensor. 

6. DISCUSSION AND FUTURE WORK 

In this work, the advantages of the tensor factorization 
approach to learn similarities and inconsistencies of CAD 
assembly data are shown to be: 

The factorisation model considers all relationships in the 
model and use this global information when creating groups 
of components. This is compared to the initial assembly tree 
structure where the components are grouped independently 
from their connectivity within the assembly.  

The computation time scales linearly with the number of 
entities avoiding any combinatory scaling issues (see Table 
1). The user can interactively explore similarities in the 
model, given the low computation time for clustering the 
matrix 𝐴. 

Additional relations can be extracted from the data and 
added as slices in the initial tensor. 

The approach relies on the boundary decompositions of the 
CAD models. The comparison of B-Rep shapes should be 
independent of the modeling process and topological 
constraints of geometric modelers [14,18]. As shown in 
Figure 14, a given shape can have different boundary 
decompositions. This may be due to the difference between 
the underlying architectures of different CAD/CAE 
packages, where periodic faces, such as cylindrical faces, 
will be represented with or without edges at the periodic 
seams. To make our approach less CAD modeler dependent, 
the virtual topology operators of Tierney [44] were used to 
merge faces and edges having the same underlying 
geometry. This is similar to the maximal topology concept 
of Vilmart et al. [18]. 

 
Figure 14 Examples of different boundary 
decomposition for the same shape. (a) The 
maximal topology (all faces and edges having 

same underlying geometry are merged). (b) 
Topology convention where cylinders are divided 
into half cylinders, (c) Particular segmentation to 
represent the bolt’s thread. 

One limitation of the proposed approach is that the 
factorisation model considers all relations as equal [3]. A 
relation containing a large number of relationships can 
influence the impact of an under-represented relation. Future 
research will look to improve the factorisation model to 
introduce weights to the relations while maintaining the 
scalability performance. This weighting will allow the user 
to adapt the influence of the relations for a particular 
application and provide a mechanism to automatically 
control and normalise the similarity threshold for different 
applications. 

Another limitation of the approach is that it is challenging to 
make 𝛿 and 𝑘 meaningful from an engineering perspective 
and therefore, depending on the shape descriptors given as 
input, determining the best threshold may necessitate 
multiple user iterations. However, these iterations are nearly 
instantaneous and finding a combination that works could be 
achieved through trial and error approaches. 

 
Figure 15 Cluster components (a) based on the B-
Rep structure and the interfaces between 
components and (b) based on shape descriptors 
[10] 

Extracting additional shape descriptors to enhance the 
identification of similarities is future work. Currently the 
topological and geometrical information from the B-Rep 
structure is used as shape descriptor. However, the current 
extracted information (see section 3.1) cannot capture all the 
characteristics of complex CAD models and is sensitive to 
small topological changes. For example, freeform surfaces 
will need additional descriptors to the ones proposed in this 
paper. Clearly, additional descriptors are needed to enhance 
the similarities. Because the factorisation model can deal 
with a large number of relationships, the challenges are to 
determine the correct set of shape descriptors to distinctively 
identify entities and to manage the conflict between different 
descriptors. Figure 15 shows the results of clustering 
components based on the current approach considering the 
connectivity between components ( Figure 15a) and based 
on rotation invariant shape descriptor using spherical 
harmonics[10] calculated on each solid (Figure 15b). It can 
be seen that the interfaces between components does not 
impact the similarity identification and therefore the screws 
in Figure 15 (a) that were grouped into two similarity groups 
have been reduced to one group in Figure 15 (b). The shape 
descriptors using spherical harmonics are computationally 
efficient to identify similar shapes independently (see Table 
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1). Shape descriptors are usually described by discrete 
values, e.g. a grid of spherical harmonic coefficients for 
different radii of spherical functions[10]. This information 
could be integrated directly into the tensor as new entities or 
attributes (attributes can be added to the factorisation using 
RESCAL-ALS[2], an extended version of RESCAL). For 
example, an attribute will be added when two solids have the 
same coefficient for a particular harmonic of a particular 
spherical function. However, this direct integration results in 
a large number of additional relationships. For example, the 
hydraulic jack model would require 35422 new attributes or 
entities compared to the 255 interfaces between components. 
This number 35422 corresponds to the use of 17 spherical 
functions with 32 spherical harmonics. A tolerance of 1e-4 
is used to consider two harmonics coefficients as equal. 
Decreasing this tolerance reduces the number of new 
relationships but decreases the similarity threshold between 
shapes. These new relationships globally influence the 
factorisation, i.e. the connectivity between components 
relationships could not be significant enough compared to 
the large number of shape descriptors relations. Integrating 
new descriptors is challenging and should be considered 
together with the introduction of weighting factors or to 
down-select relationships based on their overall 
contribution. This down-selection may vary for different 
applications, for example for feature removal applications 
certain relationships may be ignored that directly relate to 
feature insignificant for a particular analysis. 

Graph models such as Reeb graphs[11] or skeletons [12,13] 
can be added to the initial tensor to better describe the 
internal structure of objects without adding a large number 
of attributes. Here the computation time to extract these 
should be investigated to not penalise the current efficient 
computing time for building the input to the tensor method. 
Indeed, although adding new shape descriptors will improve 
the similarities of entities, it is important to consider the 
scalability of the extraction algorithm for large assembly 
models. Nevertheless, the data extraction process does not 
require the intervention of the user and is independent from 
the factorisation. It can be performed once. The output data 
can be stored and updated for any modified components 
only. 

Non-geometric information from the PLM system such as 
material properties can also be added as attributes to the 
factorisation. 

Finally, the proposed approach using the proposed shape 
characteristics is efficient and scalable on B-Rep models. 
Tessellated models or FE results can also be an entry point 
for simulation. There is also an opportunity to apply a similar 
approach, given the right set of shape descriptors, to detect 
inconsistencies on such discrete models.  

The work presented in this paper offers a number of potential 
benefits for meshing workflows: 

1. Geometry preparation: Identifying inconsistencies 
in assemblies to aid downstream conformal 
meshing. The grouping of similar components 
enables geometry clean-up operations and 
boundary condition applications to be applied to 
only one component in the group and propagated 

to the remaining components, significantly 
reducing the amount of tedious manual operations. 

2. Mesh generation: One instance in a group of 
similar components can be meshed with this mesh 
transformed to all instances. This enables identical 
meshes to be assigned to repeated components for 
certain analyses. 

3. Post-processing: Knowing the relationships 
between components, sub-assemblies and 
assemblies will make it easier to visual, interpret 
and utilize results for very large assembly models, 
where subsets of space can be easily accessed by 
the used. 

7. CONCLUSIONS 

The preparation of fit-for-purpose CAD models for the 
efficient simulation of assemblies can be time consuming for 
the analyst. In this paper, the applicability of relational 
learning by tensor factorisation is shown to help engineers 
analyse the consistency of CAD assembly models. From this 
work, the following conclusions can be drawn: 

• The RESCAL tensor model [3] is capable of 
generating a latent space reflecting the similarity of 
entities in the relational domain.  

• The latent space is used to perform entity resolution on 
CAD assemblies: i.e. identifying which CAD entities 
(B-Rep solids, faces and edges) are identical to a given 
input entity. Entity resolution is extended to group of 
faces through an algorithm taking advantages of the 
latent features and face adjacency. 

• Clustering of entities is performed in the latent space 
in order to generate groups of similar entities used to 
filter the components of interest for the analysis. The 
clusters can also be analysed by the user to identify 
inconsistencies between components, or to filter 
components considered as non-pertinent for a specific 
application.  

• The proposed CAD model analysis approach can scale 
to large assembly models due to the scalability 
property of RESCAL. The user can quickly iterate a 
CAD assembly and test different cluster variants. 
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Table 3 Statistics of the examples used in this paper. The RESCAL factorisation is performed with 10 
iterations and a rank r of 100. *Shape descriptors[10] are here for timing comparison, they are not used in the 

factorisation 

Model 
B-Rep Interfa

ces 
Tensor 
entities 

CAD  
data 

extraction 

Interface 
detection 

Shape 
descript
ed*[10] 

RESCAL 
factorisati

on 

Hierarchi
cal 

Clustering 

Clusters  
δ = 1e-

5 Solids Faces Edges 

Fused engine, 
Fig.6, 10, 11a 1 1636 4312 N/A 5949 3s N/A N/A 1.19s N/A N/A 

Hydraulic 
pump, Fig.11b 71 1725 3603 180 5579 3s 3s 5s 1.25s 0.004s 26 

Hydraulic jack, 
Fig. 11c 126 2620 6129 255 9130 4s 6s 8s 3.05s 0.002 54 

Stapler, Fig. 11d 122 5697 14385 396 20600 7s 2s 7s 7.37s 0.004s 58 
Radial engine, 
Fig. 5, 8 374 7963 16722 992 26051 10s 23s 27s 7.56s 0.014s 56 

3D printer, Fig. 
11e 878 32674 71778 3442 108772 55s 28s 42s 31s 0.06s 119 

Car engine, Fig. 
11f 997 49369 12544

8 2857 178671 1 min 42s 2mins 
05s 

1min 
17s 47s 0.09s 142 
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Figure 16 Results of the link-based clustering task on CAD assembly models. Left column: Initial models 
imported from Step files. Middle column: cluster variant with δ = 1e-5, one colour corresponds to one cluster. 
Right column: exploded view of the components’ clusters. 
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