
APPLICATION OF TENSOR FACTORISATION TO ANALYSE
SIMILARITIES IN CAD ASSEMBLY MODELS

Flavien Boussuge1, Christopher M. Tierney1, Trevor T. Robinson1, Cecil G. Armstrong
1Queen’s University Belfast, Belfast, U.K., f.boussuge@qub.ac.uk

2Queen’s University Belfast, Belfast, U.K., christopher.tierney@qub.ac.uk
3Queen’s University Belfast, Belfast, U.K., t.robinson@qub.ac.uk

4Queen’s University Belfast, Belfast, U.K., c.armstrong@qub.ac.uk

ABSTRACT

Generating fit-for-purpose CAD models from complex assemblies is time consuming for analysts. Tedious tasks include to identify
and isolate the components of interest for the analysis, remove duplicate components, or correct inconsistent components’ interfaces
are common for large assemblies during the product development process. In this paper a new approach to help engineers analyse
the consistency of CAD assembly models is proposed. The method utilises a tensor factorisation technique developed for relational
machine learning and applies it on B-Rep topological and geometrical relations. The generated decomposition is used to identify
which entities in the assembly are similar (within a threshold) to a selected input entity. The factorisation model regards globally
all input relationships, e.g. the connections between components, to identify similar entities based on their relationships in the
relational domain. It is shown that a hierarchical clustering method can group entities based on the similarities of their attributes
and relationships.

Keywords: CAD/CAE Integration, Relational Learning, Computer Aided-Design, Assembly Representation,

1. INTRODUCTION

The pre-processing of digital mock-ups for multi-physics
simulation requires identification of components anticipated
not to have an influence on the desired results and removing
them from the simulation model. Before starting the
geometric adaption and simplification of the CAD objects,
for large assembly the user should initially extract and
determine the components of interest for the analysis. Often,
CAD assemblies extracted from Product Lifecycle
Management systems contain data inconsistencies such as
missing components, duplicated entities, misalignments of
parts, or poor-quality B-Rep geometry and topology.
Consequently, designers and analysts spend considerable
time correcting the CAD input assembly in order to obtain a
model that is fit-for-purpose for finite element analysis and
ready to be meshed. In addition, identifying similar
geometric configurations in assembly is highly beneficial to
avoid repeating pre-processing tasks.

With the rapid growth of relational and network data in
social media modeling, bioinformatics and the semantic
web, relational machine learning methods [1] have been
proposed to learn from information represented in the form
of relations between entities. The objective of relational
learning is to build a model of the relational domain, where
the data can be incomplete, noisy or contain false

information [2]. The data is in the form of a graph, where
nodes represent entities and edges the relations between the
entities. Typical applications are the prediction of links in
social networks or the identification of duplicated or missing
entities in incomplete knowledge bases. In particular, tensor
factorization techniques [1,3] have shown capabilities to
process large multi-relational knowledge bases from the
semantic web Linked Open Data [4,5], consisting of millions
of entities, hundreds of relations and billions of known facts
on a standalone computer.

The CAD assemblies produced by most industrial CAD
systems (e.g. CATIA or Siemens NX) are comprised of B-
Rep component models which provide direct topological and
geometrical information. These can be represented in the
form of a graph. A B-Rep topological graph, as shown in
Figure 1, can be transformed into RDF triples [6] (e.g. Face-
is_bounded_by-Edge) and used as input data for relational
learning methods. Geometrical attributes, such as face type,
edge convexity, etc… can similarly be transferred as known
facts (e.g. Edge - has_convexity - Convex). The combination
of these topological and geometrical attributes with
information on connections between components provides
meaningful descriptors to interrogate assembly
configurations. Thus, applying relational machine learning
techniques on relational data from large CAD assembly
models provides an opportunity to rapidly identify similar
components and geometric regions as well as to visualize
duplicated, missing or inconsistent relationships. Currently,

1

the size and complexity of large assembly structures make
their analysis time-consuming. For example, a full
mechanical aero-engine model can contain 5000 solids,
0.3M faces and 1M edges. This data will represent millions
of entities and known facts making tensor factorisation, such
as the RESCAL algorithm proposed by Nickel et al.[3], an
ideal candidate to experiment with.

Figure 1. The topology of a Boundary
Representation (B-Rep) Model can be represented

as a graph.

This paper demonstrates the suitability of tensor
factorization techniques as a relational learning approach for
CAD assembly models. Our objective is to show how the
scalability of these techniques can provide designers and
analysts with rapid feedback on the configuration and
consistency of the models they are generating or modifying.

Thus, it is illustrated how to learn efficiently from simple
relational information available in CAD assembly models,
e.g. adjacency between faces and solids, components’
connectivity for tasks like:
• Entity resolution: (also known as object

identification or instance matching). Here, the entity
resolution task consists in identifying which entities
(i.e. components, B-Rep faces and edges) in the CAD
assembly refer to a similar input entity considering the
B-Rep structure as well as the components
connectivity within the assembly.

• Link-based clustering: entities (components, B-Rep
faces and edges) are sorted into groups based on the
similarity of their attributes and relationships. By
iterating on the generated clusters, the user can create
groups of similar components in order to filter the
assembly. In addition, identical components which
may not appear in the same cluster can expose
assembly model inconsistencies where neighbouring
relationships are not consistent between components.

Finally, by demonstrating how to efficiently look for
similarity in the CAD models, the aim is to reduce the
currently tedious and highly manual tasks when extracting
and preparing simulation analysis models from a large
assembly model.

2. RELATED WORK

2.1 3D shape retrieval
The approach in this paper is related to 3D shape retrieval
methods. Literature on 3D model retrieval is vast and a
comprehensive literature survey has be provided by
Tangelder & Velkampt [7]. A brief overview on this topic is
given here. Feature-based methods use shape descriptors to

match similar shapes. For example, using spherical
harmonics shape descriptors, the 3D search engine of
Funkhouser et al. [8] retrieve similar objects from a database
of 3D shapes. Robust and efficient feature-based methods
convert the entire geometry model to global descriptors
[7,9]. Kazhdan et al. proposed a rotation invariant descriptor
based on spherical harmonics [10]. Graph-based methods
evaluate the similarity between two 3D models by extracting
a graph structure from the shape’s geometry. The extracted
graph links the components of the shape together. This
graph, examples of which include a model graph [9], a reeb
graph [11] or a skeleton graph [12,13], is used to compare
shapes. Local model retrieval aims at finding similar
subparts of different 3D models. For design reuse, Bai [9]
extracts hierarchical descriptors from a CAD model feature
tree to compare subparts of CAD models. Although this
model graph method allows quick database queries, it relies
on a CAD feature tree which is not unique for a given shape
and is not always available [14]. To retrieve partial
correspondences in CAD model, You and Tsai[15] define
graphs corresponding to the B-Rep structure enriched with
geometric attributes such as surface types, curve types and
edge convexity. Although these 3D retrieval techniques
could be applied to identify similar components in a CAD
assembly, they do not consider the relationships between
components within the assembly. Two components can
share identical shapes but can be connected to completely
different components in an assembly or have different
connectivity configurations. Our objective is to identify
similarities considering all available relationships in the
CAD assembly.

2.2 CAD Assembly analysis
Assembly retrieval methods have been proposed to search
and reuse complex mechanical assembly models. In [16],
Chen et al. proposed a multilevel assembly descriptor to
distinguish CAD assemblies. The descriptor is a
combination of the hierarchical assembly structure, the
interactions between components and global shape
descriptors of components and sub-assemblies. A graph
matching algorithm is then used to identify similar
assemblies. To accelerate the matching process, an indexing
mechanism is introduced. However, only the assembly level
is considered (not the individual components’ B-Rep
structure). In addition, the hierarchical structure is not
always available to an analyst for a large assembly [17] or
not adapted to analysis requirements [18]. Hu et al. [19] uses
a vector space model (mostly employed in document
retrieval) for lightweight assembly retrieval. Although
achieving interactive results and allowing partial matching,
CAD components are transformed into simplified meshes
(losing topological and geometrical information) and
interactions between parts are not considered. Wang et al.
[20] propose an assembly retrieval method efficiently
comparing assembly models, represented as point sets using
an Earth Mover’s Distance-based matching method [21] to
evaluate the dissimilarity between signatures, however, does
not consider the relationships between parts in an assembly
in the matching. The enriched assembly model EAM of
Lupinetti et al. [22,23] contains (among other descriptors)
patterns of repeated components as well as an interface layer

2

encoding the relationships between the different parts in an
assembly model. EAMs, represented as graphs, are then
compared by solving sub-graph isomorphism problems. The
interface layer is also not considered when identifying the
repeated components.

Regarding CAD assembly analysis, the tools available in
CAD systems are mostly limited to clash/clearance analysis
between components. Using Boolean operations, Shahwaan
et al. [24] extracts and classifies interfaces between
components to qualitatively identify the functional
designation of components. This method considers the
kinematic links between components to infer information,
however, it requires a consistent model. Misaligned or
missing components stop the application of inference rules.
In addition, inferring on a large assembly is time consuming,
making this approach difficult to use for quickly identifying
inconsistencies. To overcome the scalability issue of
Boolean operations in a CAD kernel, Jourdes et al. [25] has
demonstrated how to efficiently extract assembly interfaces
using a GPU ray casting approach. In the ontology-based
approach of Vilmart et al. [18], information on repetitions of
components and sub-assemblies serves as a basis to apply
inference rules and deduce new assembly information, such
as component designation. However, here too, components
are grouped based on a one-to-one comparison using
common shape descriptors such as symmetries. Due to the
combinatory problem, such an approach is also difficult to
scale on large assembly models. To the best of our
knowledge, approaches to analyse the consistency of an
assembly model which consider the relationships between
components have not been proposed in literature.

2.3 Statistical Relational Learning
Statistical Relational Leaning (SRL) is concerned with
domain models where entities are interconnected by multiple
relations. In their review of Relation Machine Learning for
Knowledge Graphs, Nickel & Murphy [1] classify SLR
methods in two main classes: graph feature models and
latent features models.

The first class captures the correlation using statistical
models based on observable properties of the graph. For
example, an unknown relation can be derived from the
existence of a path in the graph. Initially, local similarity
techniques were used to analyse the nearest neighbourhood
of entities. In [26], Adamic & Adar proposed the frequency-
weighted common neighbours index to identify similarity of
entities by counting the common items between neighbours.
As mentioned in [1], local similarity techniques scale well
on large graphs, however, they are limited to single
relationships where similarity is identified locally based on
the direct neighbourhood. To consider that two entities can
be similar without having common attributes, global
similarity indices have been proposed. Among them, the
Leicht-Holme-Newman index [27] analyses the ensemble of
paths between entities. Although, the predictions are
improved on graphs when relationships are non-local, these
techniques might require more computation time [1,28]. For
multi-relational knowledge graphs, where each edge is
labelled to denote the type of relationship between the two
vertices, Lao & Mitchell [29] propose a Path Ranking

Algorithm to infer new beliefs in an imperfect knowledge
base by predicting the probability of missing edges. Unlike
latent feature models, this technique provides an easily
interpretable model of the extracted features on the
observable data. For further literature, Lu et al. [28] provides
a survey on similarity indices used for link prediction,
determining whether a particular relationship exists or
retrieving relationships by their likelihood.

The second SLR class captures the correlation between the
node/edges using latent features. Unlike graph-feature
models which use features observed in the data, the latent
features associated to entities have not been observed in the
data, but are assumed to be hidden causes for the observables
features [2]. Similar entities are derived from operations on
these latent features. The objective of this SRL class is to
infer the latent features automatically from the data. Tensor
factorisation models have been proposed for learning from
multi-relational knowledge graphs. Among them, Franz et
al. [30] propose the TripleRank method to rank and produce
richer description of linked data on the semantic web. The
RESCAL factorisation model of Nickel et al. [2,3,31] has
successfully demonstrated its ability to predict unknown
triples on large knowledge bases consisting of millions of
entities and known facts. RESCAL captures similarities of
entities in the relation domain via interactions of the latent
features. Jenatton et al [32] proposed a tensor factorisation
model for highly multi-relational data, where the number of
different relations is large. The reference paper of Kolda and
Bader [33] provides an extensive review on tensor
decomposition models and their applications.

Finally, as mentioned in [1], it is difficult to determine if a
relational latent feature model or graph feature model is
better for learning knowledge graphs. Authors in [1] agree
that latent feature models are suited for data showing global
relational patterns. Tensor factorization techniques are
computationally efficient on a large database when relations
can be explained using a small number of latent variables.
Graph feature models are best suited when graphs patterns
appear locally. For example, the Path Ranking Algorithm
[29] is efficient when relationships can be explained from
short paths in the graph.

In the context of this work, we propose to transcribe CAD
models (described as a B-Rep model) as knowledge graphs
to learn from. In this work, the RESCAL[3] tensor
factorisation model is used as the learning model. This
choice is based on the following assumptions:
• Similar entities (i.e. CAD components, B-Rep faces

and edges) are not necessarily close in an adjacency
graph. For example, standard components (bolts,
nuts...) can appear in various locations in a mechanical
structure. The path linking those components based on
component adjacency might be long, thus making the
graph feature model less efficient. On the other hand,
the shared entity representation in RESCAL captures
global dependencies due to the shared latent
representations.

• One objective is to provide quick feedback to the
designer/analyst on modelling errors, allowing quick
design iteration to correct the CAD model. In [2], the
authors demonstrated that the RESCAL model scales

3

linearly with the number of entities. Then, once the
factorised model is computed, the user can quickly
query if a specific relationship exists or not, essentially
in real-time.

• Another objective is to automatically generate clusters
of CAD components to help the user filter their
assembly for a specific analysis. Depending on the
input relationships selected by the user, the latent
representations of entities can be used by clustering
algorithms to automatically generate groups of
components.

The novelty of this paper is the use of a latent-features
method based on tensor factorisation to compare B-Rep
entities (solid, faces and edges) in a CAD assembly. B-Rep
entities and their connections within the assembly are
extracted and stored in a large knowledge base to learn from.
By capturing the interactions of the latent features, the tensor
factorisation considers all the input relationships between
the B-Rep entities. Entity similarities are derived from
operations on these latent features, which are then used to
detect design or assembly inconsistencies.

3. TENSOR FACTORIZATION OF CAD
ENTITIES

3.1 Proposed pipeline
The method proposed in this work to analyse the consistency
of CAD assembly models is decomposed into the following
three main steps (refer to Figure 2).

Step 1. Pre-processing: extract data and fill the tensor

The first step extracts the data from the CAD assembly
models. This data is used to populate a three-way tensor X of
size n ´ n ´ m which will be factorised in Step 2. Similar to
[3], the entries of the tensor X on the two first dimensions
correspond to the combined entities to analyse. In this work,
all the solids S, faces F and edges E of the B-Rep models B-
Rep are defined as entities. Additional geometrical types
(e.g. surface type, edge type), interfaces and convexity
attributes are also entities.

The third dimension contains the m different types of
relations between the entities. For each existing known
relationship of a kth relation between the ith entity and jth
entity, a tensor entry 𝑥"#$ 	= 	1 is added to X. Otherwise, for
non-existent relationships, the entry 𝑥"#$ is set to 0. Hence,
for each kth relation, a frontal slice 𝑋$ = 𝑿:,:,$ is generated.
This slice contains all the existing relationships (i.e. defined
as semantic triples ith entity - kth predicate - jth entity in the
RDF format) linking the entities through this kth relation.

In order to provide a first set of descriptors of the solid
models, we propose to transfer the internal B-Rep structure
into the slices of the tensor. As highlighted by You and Tsai
[15], the benefit of using the B-Rep structure is its invariance
to geometric transformation. Alignment of objects is not
required before extracting the geometric signatures.

The following four main tensor slices are generated in this
work:

• The first frontal slice X0 of X contains the topological
relations between solids, faces and edges of the B-Rep
model. For example, if a topological relation “Si -
is_bounded_by - Fj” exists, an individual tensor entry
𝑥"#, 	= 	1 of X is generated linking the ith entity (solid
Si) to the jth entity (face Fj).

• The second slice contains the relations between the
faces/edges and their geometrical and convexity type.
For example, the fact that a face is planar is described
by the relation “Fj - is_type - GeomTypep” translated
by the entry 𝑥#-. 	= 	1	in the tensor slice X1.

• The third slice contains the interface relationships
between solids. If a solid Si is touching/penetrating
another solid Sl, or if there is a gap between the solids
(smaller than a user-defined distance) the two
relations “Si – has_interface - Io” and “Sl –
has_interface - Io” are added as new entry 𝑥"/0 	= 	1 in
the slice X2. The relation between the interface and the
interface type (interference, contact or gap) is also
added.

Figure 2 Overview of the proposed approach to
learn similarities and inconsistencies in CAD
assembly model using the RESCAL[3] tensor
factorisation model.
The number of slices of the tensor model is not limited, new
slices can be added (see discussions section 6). The objective
of this paper is to demonstrate the applicability of the tensor
factorisation on CAD assembly models. The current
approach is limited to topological relationships and
straightforward geometrical parameters which are directly
available from the CAD system. Additional parameters
generated by the user, such as material properties or

4

simulation attributes can be added in the model. Adding in-
depth shape descriptors to better describe freeform surfaces
or graph structures (e.g. medial object or reeb graph) is
discussed in section 6 and left for future work.

Step 2. Tensor factorisation using RESCAL[3]

Given the tensor X of size n ´ n ´ m built in step 1, the
RESCAL factorisation model proposed by Nickel et al. in
[3] was used to compute a factorisation of X. RESCAL
factorises each frontal slice Xk of X into the following matrix
product:

𝑋$ ≈ 𝐴𝑅$𝐴4, 𝑘 ∈ 1. .𝑚

where 𝐴 is a n ´ r factor matrix, 𝑅$ is r ´ r matrix which
denotes the kth frontal slice of an adjacency R tensor.
(RESCAL jointly factorises these adjacency matrices 𝑅$,
such that 𝐴 is common for all frontal slices of X), r is a user-
defined parameter defining the number of latent components
(or common factors) in the matrix 𝐴. The matrix 𝐴 can be
viewed as an embedding of the entities in the r-dimensional
latent space [2]. The matrices 𝐴 and 𝑅$ are computed by
solving a regularized minimisation problem as described in
[3].

Step 3. Learning similarities, inconsistencies of CAD
assembly data.

Given the factorization of the initial tensor X, the essential
feature of the RESCAL method is that the latent space 𝐴
reflects the similarity of entities in the relational domain [2].
Here the similarity of entities refers to the similarities of their
relationships. For example: if two solids are bounded by the
same type of faces, which are bounded by the same type of
edges (slice X0); if these two solids are also connected to
other objects having similar topology, and so on…; there
might be evidence that the two solids are identical within the
assembly structure. Hence, two entities ei and ej can be
compared by looking at their individual latent
representations 𝑎" and 𝑎# in 𝐴. These latent representations
not only measure the common attributes between the entities
but also consider the similarity of related entities and
relations involved in the relationships of the ith and jth entity.

The RESCAL model has been initially developed to perform
relational learning tasks on large sets of relational data from
the semantic web’s Linked Open Data [31]. This paper
illustrates how the approach can be used on large CAD
assembly models to extract components or component
entities in a range of scenarios. As described in Section 1, to
demonstrate the applicability of tensor factorisation, the
relational learning tasks of entity resolution and link-based
clustering are performed. Section 4 develops these specific
tasks and applies them to CAD assembly data.

4. USAGE SCENARIOS FOR CAD/CAE
INTEGRATION

The objective of relational learning is to build a model of the
domain from relational data that can be incomplete, noisy or
even contain false information, thus avoiding the need for
expensive user clean-up operations on CAD assembly data.
From this relational model, specific learning tasks can be

performed. In this section, the benefit of deriving a
factorized model of a CAD assembly to analyse the
consistency of the design will be described. The following
usage scenarios are proposed in the context of CAD/CAE
integration to help analysts understand and correct the input
CAD models with a view to generating simulation models.

4.1. Entity resolution: retrieving similar
entities in the CAD assembly
To simplify the approach, a CAD component is assumed to
be modelled as a B-Rep solid. Following the data extraction
of a CAD assembly (see Step 1 in Section 3.1) a tensor is
generated containing the B-Rep solids, faces and edges. The
tensor is then factorised (see Step 2 in Section 3.1) and
produces a matrix 𝐴 reflecting the relational similarity of
entities.

The scenario is then to input an entity: a solid, a face or an
edge and to identify which entities are similar to it in the
CAD assembly. As mentioned in Section 3.1, similarity
refers to the data contained in all relations in the initial
tensor. As the topology relations of the CAD components are
input in the tensor, together with the connection between the
components, two CAD components (i.e. solids) are similar
not only because they share a similar topological graph, but
also because their similarity is propagated through their
connections with the other components in the assembly
which also have the same topological graph.

Hence, to compare an input entity ei, given by the user, to
any other entity ej, a ranking of all entities is computed using
their latent representation: the vectors ai and aj
corresponding the ith and jth row in 𝐴.

Following the approach of Nickel [2], to compare two
entities, the function k is calculated as such:

𝑘:𝑎", 	𝑎#; = exp?−
A𝑎" − 	𝑎#A

0

𝛿 C,

where 𝛿 is an additional user-given parameter to
exponentially scale the similarity value.

Figure 3 Retrieving similar solid entities. (a) The
solid 78 is given as input and compared with all
other solids in the assembly. (b) Solids are
coloured based on their similarity value with solid
78. In Red, the solids 373, 481 and 559 are exactly
similar to 78.

5

Figure 3 shows an example of the entity resolution on a
simple model containing 15 solids. Solid 78 (one of the
bolts) is given as an input and k is calculated for all the
solids. For all the other bolts the same k value is returned.
This result is expected as the bolts have the same topology,
same face type, same edge type and convexity type. In
addition, their faces have the same number of singularities.
Most importantly, they are connected to the same
components which are also identical. Their relations in the
tensor X are symmetric which is reflected by having identical
latent representations. Here, the data given as input in the
tensor is not sufficient to distinguish the bolt 373 (largest
bolt) being less similar than the same-size bolts 559 and 481.
Indeed, depending on the designer/analyst need, additional
shape characteristics should be added and evaluated.

Figure 4 Example of the consideration of
interference relationship between solids. The bolt
373 intersects the plates 623, 953 and 788. This
configuration differs from the bolts 78, 559 and 481
having the same diameter as the plate holes
(touching interface). 373 is less similar to 78 than
559/481 to 78 due to the consideration of the
interference relationships.
In Figure 4 the bolted junction model is modified by
changing the diameter of the holes in the plate bodies (623,
788 and 953) in order to introduce an interference between
the bolt 373 and the plates (the diameter of bolt 373 being
bigger than the holes diameter). These interferences modify
the relationships of the bolt 373. Now, as shown in Figure 4,
bolt 373 is still very similar to input 78 but slightly less
similar than the bolts 373 and 481. This result illustrates how
the RESCAL factorisation is able to consider all the relations
as opposed to pairwise comparing entity to entity.

Once the factorisation is computed (see Section 0 for
computation time), interrogating the 𝐴 matrix is quick (<1s
for an 𝐴 matrix of size 175000 ´ n, corresponding to an

assembly with 1000 solids, see Table 1 car engine model).
Hence, the user can easily select a component in the
assembly and ask which components are similar. By
changing the 𝛿 parameter and adding a threshold for k (e.g.
k>1e-10), the user can quickly filter the entities from the
more similar to the less similar. Figure 5 illustrates entity
resolution results for different values of the 𝛿 parameter. In
the prototype implementation used to test the applicability of
the proposed method, a slider component has been designed
allowing the user to interactively discover similar objects for
a given input. As shown in Figure 5(a), when setting 𝛿 to a
low value, the method returns only the most similar bolt
components. When increasing 𝛿, more components are
displayed until all components pass the threshold for k. Here,
the scenario is to use this approach to quickly select similar
components to keep/remove for the final simulation model.
For example, in Figure 5(b), the 10 camshaft fingers (shaded
component) are found distinctively even when 𝛿 is high
(relative to this specific CAD model). This can be explained
by the relatively distinct shape of the component within the
assembly.

The input entities are not limited to solids but can also be
faces or edges. On Figure 5(d) a planar face lying on the head
of the bolt of the bolted junction model is selected. Similar
faces are not only found on the same solid but also on all the
similar bolts, showing that topological relations and
components’ interfaces are simultaneously considered in the
factorisation.

4.2. Set of entity resolution: finding similar
features
In this section, it will be illustrated how the entity resolution
can be extended to sets of entities, still using the property of
the 𝐴 factor matrix in addition to the face adjacency graph
from the B-Rep model. A usage scenario is to find similar
features of a B-Rep solid, given one as an input. Here a
feature refers to a set of B-Rep faces in a solid. Hence, the
user inputs a set of adjacent faces and the algorithm returns
a list of sets of faces considered similar. The following
Algorithm 1 details the procedure. The returned list of
features is ranked by summing k for each element of the
feature (k has been previously calculated for each similar
entity of each face of the given set of faces). Hence, the
similar features can be visualized by the user in a similar
manner to the entity resolution of Section 4.1.

6

Figure 5 Examples of the entity resolution learning task. For a given solid or face entity, the user can modify
the similarity constant in order to display more to less similar entities.

Figure 6 Entity resolution on set of faces. The user
can visualize similar sets of faces on a B-Rep
component given an input set of faces.

Figure 6 shows an example of entity resolution on sets of
faces. The displayed model is a standalone B-Rep solid
which has been created from the Boolean union of multiple
individual components. The analysts’ workflow is to remove
small features, such as bolt heads considered as not relevant
for the simulation they are to carry out. Given as an input the
Set_0(F1,…Fn), shown highlighted in the box, the approach
herein returns 5 similar features for a given δ. Similar to
Section 4.1, the user can vary the value of δ to have more or
less similar features returned. The processing time, however,
is higher as more operations are performed compared to
Section 4.1. For the example shown in Figure 6, Set_4 and
Set_5 are ranked as “less similar” than 1, 2 and 3. Although,
the latent factors in 𝐴 cannot be interpreted directly, the
difference can be explained by looking at the surrounding
faces of the features in the model. Here Set 4 and 5 are
connected to faces which are less similar to the faces

surrounding the input Set 0 than the faces connected to Set
1, 2 and 3.

Algorithm 1 Identification of similar features given
an input set of adjacent face.

4.3 Link-based clustering: building a
taxonomy
In [31], authors have shown the capability of RESCAL to
perform link-based clustering on large Linked Open Data
databases containing millions of entities and known facts. As
mentioned in Section 1, the objective is to partition entities
into groups based on the similarities of relationships. In this
section, a hierarchical clustering algorithm is used to cluster
the entities using their latent representation in 𝐴. In this
latent-component space, each row of 𝐴 defines a vector of
dimension r. This set of vectors is given as input to a

Algorithm 1 IdentifySimilarFeatures
Input: fea /*given set of adjacent faces
Function AddSimilarNeighbours (Lfea , Rfea)

/* add element of Rfea (ranked list of a similar) to the list
of similar features
for each feature do

add element of Rfea to feature if element shares a
common edge with feature.
add k value of element to kfea /* kfea is the sum of k
of each element in the feature

Result: Lfea /* list of a similar features
Initialize Lfea with the list of similar faces of the first face in
fea
for each face in fea do

Rfea ← ListOfSimiliarFaces(face) /* keep the k value for
each similar faces
Lfea ← AddSimilarNeighbours(Lfea , Rfea))

Sort Lfea by kfea
Result: Lfea /* list of a similar features

7

hierarchical clustering algorithm. In this work, the algorithm
provided by the SciPy Python library [34] is used.

Figure 7 illustrates the result of the hierarchical clustering
for the bolted junction model. The corresponding
dendogram chart is shown. Here a threshold distance set to
0.05 returns 4 clusters corresponding to the 4 types of solids
present in the model. By changing the threshold distance
value, the user can visualize different cluster configurations.

Figure 7 Hierarchical clustering of the bolted
junction model. By setting a threshold, the user
can quickly iterate different clusters
configurations.

In a CAD/CAE context, the identification of similar
components and similar regions of space is meaningful to
save time in the FEM meshing operations and boundary

condition application. Although a CAD assembly tree may
exist, as explained by Vilmart [18], its structure might not be
adapted for simulation purposes. Indeed, depending on the
design protocol and user decisions, similar components can
appear in multiple branches of the assembly tree. They are
not part of the same instance. A typical example is the
assembly of standard junctions. When multiple suppliers are
involved in the assembly design, they will use their own
junction models which will appear as different sub-
assemblies in the final model. As mentioned in [31], an
application of the link-clustering is the automatic generation
of taxonomies. In the context of this work, under the
supervision of the user, a CAD assembly model can be
analysed and similar entities (components, faces, or edges)
can be grouped. Figure 8 shows the result of the clustering
for the radial engine model [35] (containing 374 solids)
when the threshold is set to 5e-3. The largest clusters contain
standard components which are repeated multiple times in
the assembly. In this model generating these clusters helps
an analyst to easily filter the assembly components. For
assembly meshing requiring conformal meshes, when the
components’ interfaces imprints are also given as input, the
user will need only to mesh one instance for each cluster and
copy it to the groups of similar entities.

Figure 8 Application of a hierarchical clustering algorithm. The A matrix is used as input for the clustering
algorithm. For this model, with a distance threshold of 0.005, 56 clusters of solid entities are generated

8

4.4 Identification of modelling
inconsistencies
A practical application of our approach concerns the
identification of modelling inconsistencies in a CAD
assembly. Indeed, when displaying the generated clusters,
some entities might not appear in the expected cluster.
Figure 9 shows examples of inconsistencies found in CAD
assemblies when analysing the clusters. In Figure 9(a), two
bolts (in orange) are not identified as being part of the bolt
cluster. This is due to the connectivity with neighboring
components which is not consistent compared to the other
bolts in the component. Their positionings generate
interferences with the casings changing their relationships in
the global tensor. In Figure 9(b), two groups of components
having the same shape are connected differently to the
casing. Here too, this configuration generates different
relationships for the two groups of components. Although,
clash management is usually handled by automatic scripts in
CAD software, it obeys strict rules conventionally defined
by the user. Here, this approach could complement the clash
detection analysis as it doesn’t follow any predefined rules
and could be apply as a visual quality check tool.

Figure 9 Example of modelling inconsistencies
found following the link-based clustering task.

In Figure 9(c), the clustering is applied on face entities and
displayed (one colour represents one cluster of faces). The
symmetries of the model are not totally reflected in the
colouring applied to the faces. An inconsistent filleting
modifies the object’s topology and an inconsistent edge
convexity type modifies the convexity relationships of the
cyclic stiffeners. These inconsistencies break the cyclic
symmetry property. By using a relational learning approach,
the user can visualize the similarities between the input
entities and then identify the inconsistencies which need to
be corrected. Having a consistent CAD assembly is highly

valuable for simulation and manufacturing. For example, a
finite element simulation of an assembly requires all the
contacts between components to be defined. Running a
process on a large assembly to automatically apply these
contacts requires a clean input model, where all the
components are correctly positioned. This approach
provides a low-cost method to help the designer identify
modelling issues upfront, without having to interrogate an
entire assembly model component by component.

Figure 10 shows another example of modelling
inconsistencies found when trying to identify similar
features (see Section 4.2). Initially, a bolt head is given as
the input set of faces. Choosing a small value for δ to display
the most similar features, one of the bolt heads is not listed
(see BoltHead_8 in Figure 10(a)). Increasing δ makes
BoltHead_8 appear with a similarity k value significantly
different from the other bolt heads. Looking closely at the
CAD model for BoltHead_8, it appears that the bolt is
intersecting the casing component before the Boolean union.
This intersection results in BoltHead_8 having a slightly
different topology from the other bolt heads, which is
reflected in the latent factors of 𝐴.

Figure 10 Inconsistency in the modelling of Bold
Heads. Increasing the scale value of the similarity
analysis reveals that the similarity of BoltHead_8
to BoltHead_0 is higher than the others bolt heads.
(a) Entity resolution with small δ, (b) same entity
resolution with a larger δ, (c) BoltHead_8 is
intersecting the casing resulting in different
geometry and topology.

Identifying inconsistent geometrical regions of a CAD
component is relevant for simulation. It saves time for an
analyst to filter the regions to simplify or remove before
meshing for finite element modelling. In this paper, the

9

identification of similarities and the link-based clustering
can be considered as an interactive tool for designer/analyst
to verify the consistency of the CAD models. Ideally,
processes could be developed to automate this identification.

5. EVALUATION ON LARGE CAD
ASSEMBLIES

5.1 Scalability of the tensor factorisation
In [3], the authors designed the RESCAL factorisation
model to be able to scale to large knowledge bases consisting
of millions of entities, hundreds of relations and billions of
known facts. In the context of this work, scalability is
important as analysts tend to simulate increasingly larger
assembly models containing thousands of components [17].
Even the design of standalone components can become
highly complex in industry. For example, an intercase
component in an aero-engine model contains around 10,000
CAD faces and 25,000 edges. It is essential to consider the
running time of an analysis tool on such a large model.

RESCAL has been designed to scale linearly with the
number of entities (see [2] giving details on the
computational complexity). In this section, the scalability of
the model is evaluated by running the proposed approach on
various CAD assembly models. In this work, RESCAL was
integrated with PythonOCC [36] (a Python version of the
open-source geometric kernel OpenCascade [37]). The
extraction of topological data and the interface detection is
performed using the Siemens NX 11 API [38] and the
Parasolid [39] library. Similar data extraction can be
performed in other CAD systems.

The factorisation and clustering was carried out on a
windows workstation with 4 Intel i7-6700 3.40 GHz CPUs,
32 GB RAM. Table 3 presents the computation time for
different CAD models shown in Figure 16. The models in
Figure 8 and Figure 16(a,e,f) are provided by the GrabCAD
[35] community. These examples were used to verify the
applicability of the proposed approach and its scalability to
large models. As expected, the timing of the factorisation is
proportional to the number of entities. For the largest model,
the car engine, the factorisation time is less than 1 minute
with a r, the number of latent components (or common
factors) in the matrix 𝐴, equals to 100.

Figure 11 Evolution of the dimension of the feature
latent space on the computation time to factorise
the tensor.

As mentioned in [2], the tensor factorization computational
complexity grows cubically with r. Error! Reference
source not found. illustrates this evolution on two use-cases
for different value of r. Depending on the size of the model,
choosing this number can have an influence on the total
computation time. The number of latent features r to
consider is difficult to evaluate. Although in-depth
evaluation has not be done in this work, our tests on the use-
cases of Figure 16 using r equals to 100 allowed to generate
clusters of expected similar shapes. Our observations
suggest using a low rank (e.g. between 20 and 50) for small
assembly (<200 solids) to avoid overfitting the model and a
larger rank for larger assemblies to include more features
and avoid underfitting. Once the factorization is computer,
the clustering operation is almost instantaneous, making it
possible to test different cluster variants. Figure 16 shows
the cluster variant corresponding to δ = 1e-5 for each
assembly model.

5.2 Comparison to graph-based and
spherical harmonics-based methods
The tensor factorization approach enables the user to quickly
interrogate the factorisation matrix when performing an
entity resolution task. In this section we compared our
approach for this task to two similar methods from the
literature: the spherical harmonics approach of Kazhdan et
al. [10] and the graph matching approach similar to [15] and
[22,23]. For this evaluation, our use-case is the Vesta model:
a large industrial CAD assembly provided by Rolls-Royce
Plc and containing 6503 solid entities (see Figure 12 (b)). In
Table 1, the runtime of the entity resolution task has been
recorded for the three methods on five different components.
For the spherical harmonics method, we use the executable
of Kazhdan[40] with 17 spherical functions having 32
spherical harmonics. For the graph matching method, we
extract the B-Rep topological face-edge graph of each solid
and enrich it with the same geometrical information as the
tensor slices, see Section 3.1, i.e. surface/edge type and edge
convexity. To perform the sub-graph isomorphism, we use
the VF2 algorithm implemented in the python library
NetworkX[41].

0

20

40

60

80

100

120

140

0 100 200 300 400 500

Fa
ct

oi
sa

tio
n

tim
e

in
 se

co
nd

s

r: dimension of the feature latent space

Model1: 9163 entities,
Fig.11c
Model2: 25059 entities,
Fig.5,8

10

Figure 12 Entity resolution evaluation task on large
assembly (Vesta model, courtesy of Rolls-Royce
Plc). (a) query components, (b) the CAD assembly
with 6503 solids, (c) example of a query using the
tensor factorization-based method.

Table 1 Entity resolution timing comparison for
the 5 components of Figure 12.

Method Global
descriptor:
Spherical
Harmonics
[10]

Graph
matching:
Subgraph
Isomorphism

Relational
Learning:
Tensor
factorisation

B-Rep stats Nb Solids: 6503, Nb Faces: 128 638,
Nb Edges: 319 500

CAD data extraction 3mins 01s

Interface detection 10mins 15s

Specific Data
preparation task

Shape
descriptors

computation

Graph
generation.

Tensor
Factorisation
(rank: 100)

1min 42s 0.77s 2mins 18s

Entity Resolution task

Solid_0
5 faces, 4 edges 0.14s 0.06s 0.07s

Solid_1
20 faces, 28 edges 0.12s 3.11s 0.07s

Solid_2
19 faces, 48 edges 0.14s 15mins 43s 0.07s

Solid_3
36 faces, 36 edges 0.11s 12mins 36s 0.07s

Solid_4
141 faces, 241 edges 0.12s 2mins 18s 0.07s

As shown in Table 1, the spherical harmonics approach
requires a specific data preparation task to calculate the
descriptor. Similarly, our approach requires to compute the
factorisation of the tensor. The graph matching method can
directly operate on the B-Rep graph, however, depending on
the sub-graph configuration of the query component to
match in the large assembly graph, the entity resolution task
can be time consuming. This is particularly true when the
combinatory is high, such as for the repeated components
Solid_2 and Solid_3 corresponding to the numerous blades
and seals present in the assembly. In this case, the matching
algorithm has to look for a medium-size sub-graph pattern
repeated several times into a large graph. The other two
approaches, on the other hand, can directly compare the
entities by looking at their factorised/shape descriptor
vectors. Table 2 summarises the pros and cons of the three
methods.

Table 2 Advantages and disadvantages of
the evaluated methods

Method Pros Cons

Global
descriptor:
Spherical
Harmonics
[10]

Efficient to identify
components having
globally similar shapes.
Query components can
be stored in a database.
Not sensitive to CAD
topological variation.

Do not detect subpart
(feature) in shape. Do
not consider CAD
topological
segmentation. Do not
consider interfaces
between components.

Graph
matching:
Subgraph
Isomorphism

Can match sub-shapes
from a database to a new
model.

Require an initial
segmentation. Sensitive
to CAD topological
variation. Sensitive to
the combinatory of
different entities.

Relational
Learning:
Tensor
factorisation
(our
approach)

Efficient to interactively
compare entities within
the same model. Able to
analyse all relationships,
considering interfaces
between components.
Quick query.

Require an initial
segmentation. Cannot
compare subpart stored
in a database. Sensitive
to CAD topological
variation

To evaluate the clustering task performance, we built up a
ground truth model of the Vesta assembly containing
annotated components to compare with the clustering results
obtained from our approach. Figure 13 (a-c) illustrates this
model. 6218 solids out of 6503 have been grouped into 148
classes to represent a model an analyst would usually start
with when setting up a FEM simulation on such large model.
Indeed, an intuitive approach is to group similar repeated
components along the aeroengine rotation axis. We then
computed two cluster performance metrics: the adjusted
rand index and the completeness scores using the scikit-learn
python library[42]. The adjusted rand index measures from
0 to 1 (1 been the perfect score) the similarity between two
clusters. The completeness metrics, measuring from 0 to 1
(1 been the perfect score), are divided into a homogeneity
score (measuring how much each cluster contains only
members of a single class) and a completeness score
(measuring how much all members of a given class are
assigned to the same cluster). The V-measure is the
harmonic mean of the homogeneity and completeness
scores[43].

11

Figure 13 Evaluation of the clustering task on the Vesta model (courtesy of Rolls-Royce Plc) using the
adjusted rand score and completeness score metrics: (a) the initial annotated model containing 6218
annotated solids (in color) of 6503; (b) display of the annotated solid; (c) Ground truth model containing 148
classes (one displayed component corresponds to one class), (d) clustering result based on spherical
harmonics descriptors [10], (e-f) clustering result using our approach.

12

As shown in Figure 13, our approach scores over 0.7 for the
adjusted rand index and over 0.9 for the V-measure.
However, it never reaches the ground truth classes
configuration. This can be explained by the fact that our
approach does not consider the position of components along
the axis of rotation. Indeed, the ground truth model separates
blades and vanes components depending on their axial stage
position in the aeroengine. This information is not given as
an input to the tensor. However, by considering the
interfaces between components, it starts separating the
blade/vanes components into the compressors and turbines
areas. This separation cannot be reached when using the
spherical harmonics approach as it compares components
individually. As discussed in the following section, future
work is dedicated to improving these metrics by
incorporating additional information in the initial tensor.

6. DISCUSSION AND FUTURE WORK

In this work, the advantages of the tensor factorization
approach to learn similarities and inconsistencies of CAD
assembly data are shown to be:

The factorisation model considers all relationships in the
model and use this global information when creating groups
of components. This is compared to the initial assembly tree
structure where the components are grouped independently
from their connectivity within the assembly.

The computation time scales linearly with the number of
entities avoiding any combinatory scaling issues (see Table
1). The user can interactively explore similarities in the
model, given the low computation time for clustering the
matrix 𝐴.

Additional relations can be extracted from the data and
added as slices in the initial tensor.

The approach relies on the boundary decompositions of the
CAD models. The comparison of B-Rep shapes should be
independent of the modeling process and topological
constraints of geometric modelers [14,18]. As shown in
Figure 14, a given shape can have different boundary
decompositions. This may be due to the difference between
the underlying architectures of different CAD/CAE
packages, where periodic faces, such as cylindrical faces,
will be represented with or without edges at the periodic
seams. To make our approach less CAD modeler dependent,
the virtual topology operators of Tierney [44] were used to
merge faces and edges having the same underlying
geometry. This is similar to the maximal topology concept
of Vilmart et al. [18].

Figure 14 Examples of different boundary
decomposition for the same shape. (a) The
maximal topology (all faces and edges having

same underlying geometry are merged). (b)
Topology convention where cylinders are divided
into half cylinders, (c) Particular segmentation to
represent the bolt’s thread.

One limitation of the proposed approach is that the
factorisation model considers all relations as equal [3]. A
relation containing a large number of relationships can
influence the impact of an under-represented relation. Future
research will look to improve the factorisation model to
introduce weights to the relations while maintaining the
scalability performance. This weighting will allow the user
to adapt the influence of the relations for a particular
application and provide a mechanism to automatically
control and normalise the similarity threshold for different
applications.

Another limitation of the approach is that it is challenging to
make 𝛿 and 𝑘 meaningful from an engineering perspective
and therefore, depending on the shape descriptors given as
input, determining the best threshold may necessitate
multiple user iterations. However, these iterations are nearly
instantaneous and finding a combination that works could be
achieved through trial and error approaches.

Figure 15 Cluster components (a) based on the B-
Rep structure and the interfaces between
components and (b) based on shape descriptors
[10]

Extracting additional shape descriptors to enhance the
identification of similarities is future work. Currently the
topological and geometrical information from the B-Rep
structure is used as shape descriptor. However, the current
extracted information (see section 3.1) cannot capture all the
characteristics of complex CAD models and is sensitive to
small topological changes. For example, freeform surfaces
will need additional descriptors to the ones proposed in this
paper. Clearly, additional descriptors are needed to enhance
the similarities. Because the factorisation model can deal
with a large number of relationships, the challenges are to
determine the correct set of shape descriptors to distinctively
identify entities and to manage the conflict between different
descriptors. Figure 15 shows the results of clustering
components based on the current approach considering the
connectivity between components (Figure 15a) and based
on rotation invariant shape descriptor using spherical
harmonics[10] calculated on each solid (Figure 15b). It can
be seen that the interfaces between components does not
impact the similarity identification and therefore the screws
in Figure 15 (a) that were grouped into two similarity groups
have been reduced to one group in Figure 15 (b). The shape
descriptors using spherical harmonics are computationally
efficient to identify similar shapes independently (see Table

13

1). Shape descriptors are usually described by discrete
values, e.g. a grid of spherical harmonic coefficients for
different radii of spherical functions[10]. This information
could be integrated directly into the tensor as new entities or
attributes (attributes can be added to the factorisation using
RESCAL-ALS[2], an extended version of RESCAL). For
example, an attribute will be added when two solids have the
same coefficient for a particular harmonic of a particular
spherical function. However, this direct integration results in
a large number of additional relationships. For example, the
hydraulic jack model would require 35422 new attributes or
entities compared to the 255 interfaces between components.
This number 35422 corresponds to the use of 17 spherical
functions with 32 spherical harmonics. A tolerance of 1e-4
is used to consider two harmonics coefficients as equal.
Decreasing this tolerance reduces the number of new
relationships but decreases the similarity threshold between
shapes. These new relationships globally influence the
factorisation, i.e. the connectivity between components
relationships could not be significant enough compared to
the large number of shape descriptors relations. Integrating
new descriptors is challenging and should be considered
together with the introduction of weighting factors or to
down-select relationships based on their overall
contribution. This down-selection may vary for different
applications, for example for feature removal applications
certain relationships may be ignored that directly relate to
feature insignificant for a particular analysis.

Graph models such as Reeb graphs[11] or skeletons [12,13]
can be added to the initial tensor to better describe the
internal structure of objects without adding a large number
of attributes. Here the computation time to extract these
should be investigated to not penalise the current efficient
computing time for building the input to the tensor method.
Indeed, although adding new shape descriptors will improve
the similarities of entities, it is important to consider the
scalability of the extraction algorithm for large assembly
models. Nevertheless, the data extraction process does not
require the intervention of the user and is independent from
the factorisation. It can be performed once. The output data
can be stored and updated for any modified components
only.

Non-geometric information from the PLM system such as
material properties can also be added as attributes to the
factorisation.

Finally, the proposed approach using the proposed shape
characteristics is efficient and scalable on B-Rep models.
Tessellated models or FE results can also be an entry point
for simulation. There is also an opportunity to apply a similar
approach, given the right set of shape descriptors, to detect
inconsistencies on such discrete models.

The work presented in this paper offers a number of potential
benefits for meshing workflows:

1. Geometry preparation: Identifying inconsistencies
in assemblies to aid downstream conformal
meshing. The grouping of similar components
enables geometry clean-up operations and
boundary condition applications to be applied to
only one component in the group and propagated

to the remaining components, significantly
reducing the amount of tedious manual operations.

2. Mesh generation: One instance in a group of
similar components can be meshed with this mesh
transformed to all instances. This enables identical
meshes to be assigned to repeated components for
certain analyses.

3. Post-processing: Knowing the relationships
between components, sub-assemblies and
assemblies will make it easier to visual, interpret
and utilize results for very large assembly models,
where subsets of space can be easily accessed by
the used.

7. CONCLUSIONS

The preparation of fit-for-purpose CAD models for the
efficient simulation of assemblies can be time consuming for
the analyst. In this paper, the applicability of relational
learning by tensor factorisation is shown to help engineers
analyse the consistency of CAD assembly models. From this
work, the following conclusions can be drawn:

• The RESCAL tensor model [3] is capable of
generating a latent space reflecting the similarity of
entities in the relational domain.

• The latent space is used to perform entity resolution on
CAD assemblies: i.e. identifying which CAD entities
(B-Rep solids, faces and edges) are identical to a given
input entity. Entity resolution is extended to group of
faces through an algorithm taking advantages of the
latent features and face adjacency.

• Clustering of entities is performed in the latent space
in order to generate groups of similar entities used to
filter the components of interest for the analysis. The
clusters can also be analysed by the user to identify
inconsistencies between components, or to filter
components considered as non-pertinent for a specific
application.

• The proposed CAD model analysis approach can scale
to large assembly models due to the scalability
property of RESCAL. The user can quickly iterate a
CAD assembly and test different cluster variants.

. ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support
provided by the European Commission via the MUMPS
project (704557), a H2020-MSCA-IF-2015 founding
scheme and also the support provided by Innovate UK via
GEMinIDS (project 113088), a UK Centre for
Aerodynamics project. The authors acknowledge Rolls-
Royce Plc for granting permission to publish this paper and
for providing the Vesta aeroengine use-case.

14

Table 3 Statistics of the examples used in this paper. The RESCAL factorisation is performed with 10
iterations and a rank r of 100. *Shape descriptors[10] are here for timing comparison, they are not used in the

factorisation

Model
B-Rep Interfa

ces
Tensor
entities

CAD
data

extraction

Interface
detection

Shape
descript
ed*[10]

RESCAL
factorisati

on

Hierarchi
cal

Clustering

Clusters
δ = 1e-

5 Solids Faces Edges

Fused engine,
Fig.6, 10, 11a 1 1636 4312 N/A 5949 3s N/A N/A 1.19s N/A N/A

Hydraulic
pump, Fig.11b 71 1725 3603 180 5579 3s 3s 5s 1.25s 0.004s 26

Hydraulic jack,
Fig. 11c 126 2620 6129 255 9130 4s 6s 8s 3.05s 0.002 54

Stapler, Fig. 11d 122 5697 14385 396 20600 7s 2s 7s 7.37s 0.004s 58
Radial engine,
Fig. 5, 8 374 7963 16722 992 26051 10s 23s 27s 7.56s 0.014s 56

3D printer, Fig.
11e 878 32674 71778 3442 108772 55s 28s 42s 31s 0.06s 119

Car engine, Fig.
11f 997 49369 12544

8 2857 178671 1 min 42s 2mins
05s

1min
17s 47s 0.09s 142

15

Figure 16 Results of the link-based clustering task on CAD assembly models. Left column: Initial models
imported from Step files. Middle column: cluster variant with δ = 1e-5, one colour corresponds to one cluster.
Right column: exploded view of the components’ clusters.

16

REFERENCES

[1] M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, A
review of relational machine learning for knowledge
graphs, Proc. IEEE. 104 (2016) 11–33.

[2] M. Nickel, Tensor factorization for relational
learning, Ludwig-Maximilians-Universität
München, n.d.

[3] M. Nickel, V. Tresp, H.-P. Kriegel, A Three-Way
Model for Collective Learning on Multi-Relational
Data., in: ICML, 2011: pp. 809–816.

[4] C. Bizer, T. Heath, T. Berners-Lee, Linked data: The
story so far, in: Semant. Serv. Interoperability Web
Appl. Emerg. Concepts, IGI Global, 2011: pp. 205–
227.

[5] W3C, Linked data, (n.d.).
https://www.w3.org/standards/semanticweb/data
(accessed February 1, 2019).

[6] W3C Working Group, Resource Description
Framework Schema 1.1, (2014).

[7] J.W.H. Tangelder, R.C. Veltkamp, A survey of
content based 3D shape retrieval methods, in: Shape
Model. Appl. 2004. Proc., IEEE, 2004: pp. 145–156.

[8] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A.
Halderman, D. Dobkin, D. Jacobs, A search engine
for 3D models, ACM Trans. Graph. 22 (2003) 83–
105.

[9] J. Bai, S. Gao, W. Tang, Y. Liu, S. Guo, Design
reuse oriented partial retrieval of CAD models,
Comput. Des. 42 (2010) 1069–1084.

[10] M. Kazhdan, T. Funkhouser, S. Rusinkiewicz,
Rotation invariant spherical harmonic representation
of 3 d shape descriptors, in: Symp. Geom. Process.,
2003: pp. 156–164.

[11] D. Bespalov, W.C. Regli, A. Shokoufandeh, Reeb
graph based shape retrieval for CAD, in: ASME
2003 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng.
Conf., American Society of Mechanical Engineers,
2003: pp. 229–238.

[12] H. Sundar, D. Silver, N. Gagvani, S. Dickinson,
Skeleton based shape matching and retrieval, in:
Shape Model. Int. 2003, IEEE, 2003: pp. 130–139.

[13] A. Tagliasacchi, T. Delame, M. Spagnuolo, N.
Amenta, A. Telea, 3d skeletons: A state‐of‐the‐art
report, in: Comput. Graph. Forum, Wiley Online
Library, 2016: pp. 573–597.

[14] F. Boussuge, J.-C. Léon, S. Hahmann, L. Fine,
Extraction of generative processes from B-Rep
shapes and application to idealization
transformations, Comput. Des. 46 (2014) 79–89.

[15] C.-F. You, Y.-L. Tsai, 3D solid model retrieval for
engineering reuse based on local feature
correspondence, Int. J. Adv. Manuf. Technol. 46
(2010) 649–661.

[16] X. Chen, S. Gao, S. Guo, J. Bai, A flexible assembly
retrieval approach for model reuse, Comput. Des. 44
(2012) 554–574.

[17] F. Boussuge, J.-C. Léon, S. Hahmann, L. Fine, An
analysis of DMU transformation requirements for
structural assembly simulations, in: Int. Conf.

ECT2012, Proc. Eighth Int. Conf. Eng. Comput.
Technol. Dubrovnik, Croat. 4-7 Sept. 2012, 2012.

[18] H. Vilmart, J.-C. Léon, F. Ulliana, From CAD
Assemblies toward Knowledge-based Assemblies
using an Intrinsic Knowledge-based Assembly
Model, in: Proc. CAD’17, 2017: pp. 374–378.

[19] K.-M. Hu, B. Wang, J.-H. Yong, J.-C. Paul, Relaxed
lightweight assembly retrieval using vector space
model, Comput. Des. 45 (2013) 739–750.

[20] P. Wang, Y. Li, J. Zhang, J. Yu, An assembly
retrieval approach based on shape distributions and
Earth Mover’s Distance, Int. J. Adv. Manuf.
Technol. 86 (2016) 2635–2651.

[21] Y. Rubner, C. Tomasi, L.J. Guibas, The earth
mover’s distance as a metric for image retrieval, Int.
J. Comput. Vis. 40 (2000) 99–121.

[22] K. Lupinetti, F. Giannini, M. Monti, J.-P. Pernot,
Multi-criteria retrieval of CAD assembly models, J.
Comput. Des. Eng. 5 (2018) 41–53.

[23] K. Lupinetti, F. Giannini, M. Monti, J.-P. Pernot,
Automatic extraction of assembly component
relationships for assembly model retrieval, Procedia
CIRP. 50 (2016) 472–477.

[24] A. Shahwan, J.-C. Léon, G. Foucault, M. Trlin, O.
Palombi, Qualitative behavioral reasoning from
components’ interfaces to components’ functions for
DMU adaption to FE analyses, Comput. Des. 45
(2013) 383–394.

[25] F. Jourdes, G.-P. Bonneau, S. Hahmann, J.-C. Léon,
F. Faure, Computation of components’ interfaces in
highly complex assemblies, Comput. Des. 46 (2014)
170–178.

[26] L.A. Adamic, E. Adar, Friends and neighbors on the
web, Soc. Networks. 25 (2003) 211–230.

[27] E.A. Leicht, P. Holme, M.E.J. Newman, Vertex
similarity in networks, Phys. Rev. E. 73 (2006)
26120.

[28] L. Lü, T. Zhou, Link prediction in complex
networks: A survey, Phys. A Stat. Mech. Its Appl.
390 (2011) 1150–1170.

[29] N. Lao, T. Mitchell, W.W. Cohen, Random walk
inference and learning in a large scale knowledge
base, in: Proc. Conf. Empir. Methods Nat. Lang.
Process., Association for Computational Linguistics,
2011: pp. 529–539.

[30] T. Franz, A. Schultz, S. Sizov, S. Staab, Triplerank:
Ranking semantic web data by tensor
decomposition, in: Int. Semant. Web Conf.,
Springer, 2009: pp. 213–228.

[31] M. Nickel, V. Tresp, H.-P. Kriegel, Factorizing
yago: scalable machine learning for linked data, in:
Proc. 21st Int. Conf. World Wide Web, ACM, 2012:
pp. 271–280.

[32] R. Jenatton, N.L. Roux, A. Bordes, G.R. Obozinski,
A latent factor model for highly multi-relational
data, in: Adv. Neural Inf. Process. Syst., 2012: pp.
3167–3175.

[33] T.G. Kolda, B.W. Bader, Tensor decompositions
and applications, SIAM Rev. 51 (2009) 455–500.

[34] SciPy.org, SciPy - hierarchical clustering, (2018).
https://docs.scipy.org/doc/scipy/reference/cluster.hie

17

rarchy.html (accessed February 1, 2019).
[35] Stratasys, GrabCAD, (2018).

https://grabcad.com/library/radial-engine-163;
https://grabcad.com/library/prusa-i3-mk3-
solidworks-1%0D,
https://grabcad.com/library/engine-2-0-liter-4-
cylinder-88mm-bore-x-80mm-stroke-1%0D.

[36] T. Paviot, PythonOCC - 3D CAD for python,
(2017). http://www.pythonocc.org/ (accessed
February 1, 2019).

[37] OpenCascade - Opensource 3D CAD kernel, (2019).
https://www.opencascade.com/ (accessed February
1, 2019).

[38] Siemens plm software, NX, (2018).
http://www.plm.automation.siemens.com/en_us/pro
ducts/nx/index.shtml (accessed June 5, 2017).

[39] Siemens plm software, Parasolid, (2018).
https://www.plm.automation.siemens.com/en_us/pro
ducts/open/parasolid/ (accessed June 5, 2017).

[40] Michael Kazhdan, Rotation Invariant Shape
Descriptors, (n.d.).
http://www.cs.jhu.edu/~misha/Code/ShapeSPH/Sha
peDescriptor/ (accessed August 16, 2019).

[41] NetworkX - Isomorphism - VF2 algorithm, (2019).
https://networkx.github.io/documentation/latest/refer
ence/algorithms/isomorphism.vf2.html.

[42] Scikit-learn, Clustering evaluation, (2019).
https://scikit-
learn.org/stable/modules/clustering.html#clustering-
performance-evaluation (accessed August 14, 2019).

[43] A. Rosenberg, J. Hirschberg, V-measure: A
conditional entropy-based external cluster evaluation
measure, in: Proc. 2007 Jt. Conf. Empir. Methods
Nat. Lang. Process. Comput. Nat. Lang. Learn.,
2007: pp. 410–420.

[44] C.M. Tierney, L. Sun, T.T. Robinson, C.G.
Armstrong, Using virtual topology operations to
generate analysis topology, Comput. Des. 85 (2017)
154–167.
doi:https://doi.org/10.1016/j.cad.2016.07.015.

18

