
Known-authors SIAM/ACM Preprint Series Macros for Use With LATEX
∗

Corey Gray† Tricia Manning‡

Abstract

An abstract is a brief summary of the paper’s contributions,

written for experts. It was written by Gray and Manning.

1 Introduction.

An introduction is a gentler description and summary
of the paper than the abstract, written for non-experts.
It describes the paper’s concepts, contribution, context
and significance.

1.1 Problem Specification. In this paper, we con-
sider the solution of the N ×N linear system

Ax = b(1.1)

where A is large, sparse, symmetric, and positive def-
inite. We consider the direct solution of eq. (1.1) by
means of general sparse Gaussian elimination. In such
a procedure, we find a permutation matrix P , and com-
pute the decomposition

PAP t = LDLt

where L is unit lower triangular and D is diagonal.

2 Design Considerations.

Several good ordering algorithms (nested dissection and
minimum degree) are available for computing P [3, 7].
Since our interest here does not focus directly on the
ordering, we assume for convenience that P = I, or
that A has been preordered to reflect an appropriate
choice of P .

Our purpose here is to examine the nonnumerical
complexity of the sparse elimination algorithm given
in [1]. As was shown there, a general sparse elimination
scheme based on the bordering algorithm requires less
storage for pointers and row/column indices than more
traditional implementations of general sparse elimina-
tion. This is accomplished by exploiting the m-tree, a
particular spanning tree for the graph of the filled-in
matrix.

∗The full version of the paper can be accessed at https:

//arxiv.org/abs/1902.09310
†Society for Industrial and Applied Mathematics.
‡Society for Industrial and Applied Mathematics.

Theorem 2.1. The method was extended to three di-
mensions. For the standard multigrid coarsening (in
which, for a given grid, the next coarser grid has 1/8 as
many points), anisotropic problems require plane relax-
ation to obtain a good smoothing factor.

Our purpose here is to examine the nonnumerical
complexity of the sparse elimination algorithm given
in [1]. As was shown there, a general sparse elimination
scheme based on the bordering algorithm requires less
storage for pointers and row/column indices than more
traditional implementations of general sparse elimina-
tion; see Thm. 2.1. This is accomplished by exploiting
the m-tree, a particular spanning tree for the graph of
the filled-in matrix. Several good ordering algorithms
(nested dissection and minimum degree) are available
for computing P [3, 7]. Since our interest here does
not focus directly on the ordering, we assume for con-
venience that P = I, or that A has been preordered to
reflect an appropriate choice of P .

Proof. In this paper we consider two methods. The
first method is basically the method considered with
two differences: first, we perform plane relaxation by a
two-dimensional multigrid method, and second, we use a
slightly different choice of interpolation operator, which
improves performance for nearly singular problems. In
the second method coarsening is done by successively
coarsening in each of the three independent variables
and then ignoring the intermediate grids; this artifice
simplifies coding considerably.

Our purpose here is to examine the nonnumerical
complexity of the sparse elimination algorithm given
in [1]. As was shown there, a general sparse elimination
scheme based on the bordering algorithm requires less
storage for pointers and row/column indices than more
traditional implementations of general sparse elimina-
tion. This is accomplished by exploiting the m-tree, a
particular spanning tree for the graph of the filled-in
matrix.

Definition 2.1. We describe the two methods in sec-
tion 2. In section 2.1 we discuss some remaining details.

Our purpose here is to examine the nonnumerical
complexity of the sparse elimination algorithm given in

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/1902.09310
https://arxiv.org/abs/1902.09310


[1]. As was shown there, a general sparse elimination
scheme based on the bordering algorithm requires less
storage for pointers and row/column indices than more
traditional implementations of general sparse elimina-
tion. This is accomplished by exploiting the m-tree, a
particular spanning tree for the graph of the filled-in ma-
trix. Several good ordering algorithms (nested dissec-
tion and minimum degree) are available for computing
P [3, 7]. Since our interest here does not focus directly
on the ordering, we assume for convenience that P = I,
or that A has been preordered to reflect an appropriate
choice of P .

Our purpose here is to examine the nonnumerical
complexity of the sparse elimination algorithm given
in [1]. As was shown there, a general sparse elimination
scheme based on the bordering algorithm requires less
storage for pointers and row/column indices than more
traditional implementations of general sparse elimina-
tion.

Lemma 2.1. We discuss first the choice for Ikk−1 which

is a generalization. We assume that Gk−1 is obtained
from Gk by standard coarsening; that is, if Gk is a
tensor product grid Gk

x × Gk
y × Gk

z , Gk−1 = Gk−1
x ×

Gk−1
y ×Gk−1

z , where Gk−1
x is obtained by deleting every

other grid point of Gk
x and similarly for Gk

y and Gk
z .

To our knowledge, the m-tree previously has not
been applied in this fashion to the numerical factoriza-
tion, but it has been used, directly or indirectly, in sev-
eral optimal order algorithms for computing the fill-in
during the symbolic factorization phase [4, 5, 6, 7, 8, 9,
10]. In section 2.1, we analyze the complexity of the old
and new approaches to the intersection problem for the
special case of an n × n grid ordered by nested dissec-
tion. The special structure of this problem allows us to
make exact estimates of the complexity. To our knowl-
edge, the m-tree previously has not been applied in this
fashion to the numerical factorization, but it has been
used, directly or indirectly, in several optimal order al-
gorithms for computing the fill-in during the symbolic
factorization phase [4, 5, 6, 7, 8, 9, 10].

In section 2, we review the bordering algorithm,
and introduce the sorting and intersection problems
that arise in the sparse formulation of the algorithm.
In section 2.1, we analyze the complexity of the old
and new approaches to the intersection problem for
the special case of an n × n grid ordered by nested
dissection. The special structure of this problem allows
us to make exact estimates of the complexity. To our
knowledge, the m-tree previously has not been applied
in this fashion to the numerical factorization, but it has
been used, directly or indirectly, in several optimal order

algorithms for computing the fill-in during the symbolic
factorization phase [4, 5, 6, 7, 8, 9, 10].

For the old approach, we show that the complexity
of the intersection problem is O(n3), the same as the
complexity of the numerical computations. For the new
approach, the complexity of the second part is reduced
to O(n2(log n)2).

To our knowledge, the m-tree previously has not
been applied in this fashion to the numerical factoriza-
tion, but it has been used, directly or indirectly, in sev-
eral optimal order algorithms for computing the fill-in
during the symbolic factorization phase [4, 5, 6, 7, 8, 9,
10]. In section 2.1, we analyze the complexity of the old
and new approaches to the intersection problem for the
special case of an n × n grid ordered by nested dissec-
tion. The special structure of this problem allows us to
make exact estimates of the complexity. To our knowl-
edge, the m-tree previously has not been applied in this
fashion to the numerical factorization, but it has been
used, directly or indirectly, in several optimal order al-
gorithms for computing the fill-in during the symbolic
factorization phase [4, 5, 6, 7, 8, 9, 10]. This is accom-
plished by exploiting the m-tree, a particular spanning
tree for the graph of the filled-in matrix. To our knowl-
edge, the m-tree previously has not been applied in this
fashion to the numerical factorization, but it has been
used, directly or indirectly, in several optimal order al-
gorithms for computing the fill-in during the symbolic
factorization phase [2, 3, 4, 5, 6, 8, 10].

2.1 Robustness. We do not attempt to present an
overview here, but rather attempt to focus on those
results that are relevant to our particular algorithm;
see fig. 1. This section assumes prior knowledge of
the role of graph theory in sparse Gaussian elimination;
surveys of this role are available in [7, 3]. More general
discussions of elimination trees are given in [4, 5, 6, 10].
Thus, at the kth stage, the bordering algorithm consists
of solving the lower triangular system

Lk−1v = c(2.2)

and setting

ℓ = D−1
k−1v,(2.3)

δ = α− ℓtv.(2.4)

3 Robustness.

We do not attempt to present an overview here, but
rather attempt to focus on those results that are relevant
to our particular algorithm.

3.1 Versatility. The special structure of this prob-
lem allows us to make exact estimates of the complex-

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



Figure 1: This is a figure.

ity. For the old approach, we show that the complexity
of the intersection problem is O(n3), the same as the
complexity of the numerical computations [3, 9]. For
the new approach, the complexity of the second part is
reduced to O(n2(log n)2).

To our knowledge, the m-tree previously has not
been applied in this fashion to the numerical factoriza-
tion, but it has been used, directly or indirectly, in sev-
eral optimal order algorithms for computing the fill-in
during the symbolic factorization phase [4, 5, 6, 7, 8, 9,
10]. In section 2.1, we analyze the complexity of the old
and new approaches to the intersection problem for the
special case of an n × n grid ordered by nested dissec-
tion. The special structure of this problem allows us to
make exact estimates of the complexity. To our knowl-
edge, the m-tree previously has not been applied in this
fashion to the numerical factorization, but it has been
used, directly or indirectly, in several optimal order al-
gorithms for computing the fill-in during the symbolic
factorization phase [4, 5, 6, 7, 8, 9, 10].

In section 2, we review the bordering algorithm,
and introduce the sorting and intersection problems
that arise in the sparse formulation of the algorithm.
In section 2.1, we analyze the complexity of the old
and new approaches to the intersection problem for
the special case of an n × n grid ordered by nested
dissection. The special structure of this problem allows
us to make exact estimates of the complexity. To our
knowledge, the m-tree previously has not been applied
in this fashion to the numerical factorization, but it has
been used, directly or indirectly, in several optimal order
algorithms for computing the fill-in during the symbolic
factorization phase [4, 5, 6, 7, 8, 9, 10].

For the old approach, we show that the complexity
of the intersection problem is O(n3), the same as the
complexity of the numerical computations. For the new

approach, the complexity of the second part is reduced
to O(n2(log n)2).

To our knowledge, the m-tree previously has not
been applied in this fashion to the numerical factor-
ization, but it has been used, directly or indirectly, in
several optimal order algorithms for computing the fill-
in during the symbolic factorization phase [4, 5, 6, 7,
8, 9, 10]. In section 2.1, we analyze the complexity of
the old and new approaches to the intersection problem
for the special case of an n × n grid ordered by nested
dissection. The special structure of this problem allows
us to make exact estimates of the complexity.

Acknowledgements

I thank Thouis Ray Jones for suggesting this problem
to me in 2012, and my institution for funding me.

References

[1] R. E. Bank and R. K. Smith, General sparse elimi-
nation requires no permanent integer storage, SIAM J.
Sci. Stat. Comput., 8 (1987), pp. 574–584.

[2] S. C. Eisenstat, M. C. Gursky, M. Schultz,
and A. Sherman, Algorithms and data structures for
sparse symmetric Gaussian elimination, SIAM J. Sci.
Stat. Comput., 2 (1982), pp. 225–237.

[3] A. George and J. Liu, Computer Solution of Large
Sparse Positive Definite Systems, Prentice Hall, Engle-
wood Cliffs, NJ, 1981.

[4] K. H. Law and S. J. Fenves, A node addition model
for symbolic factorization, ACM TOMS, 12 (1986),
pp. 37–50.

[5] J. W. H. Liu, A compact row storage scheme for
Cholesky factors using elimination trees, ACM TOMS,
12 (1986), pp. 127–148.

[6] , The role of elimination trees in sparse factoriza-
tion, Tech. Rep. CS-87-12, Department of Computer
Science, York University, Ontario, Canada, 1987.

[7] D. J. Rose, A graph theoretic study of the numeric
solution of sparse positive definite systems, in Graph
Theory and Computing, Academic Press, New York,
1972.

[8] D. J. Rose, R. E. Tarjan, and G. S. Lueker,
Algorithmic aspects of vertex elimination on graphs,
SIAM J. Comput., 5 (1976), pp. 226–283.

[9] D. J. Rose and G. F. Whitten, A recursive analysis
of disection strategies, in Sparse Matrix Computations,
J. R. BUNCH and D. J. ROSE, eds., Academic Press,
New York, 1976.

[10] R. Schrieber, A new implementation of sparse Gaus-
sian elimination, ACM TOMS, 8 (1982), pp. 256–276.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited


	Introduction.
	Problem Specification.

	Design Considerations.
	Robustness.

	Robustness.
	Versatility.


